羟基自由基氧化醋酸异丙酯的从头计算化学动力学

IF 5.8 3区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
M. Abdel-Rahman, M. Shibl, A. Shiroudi, Mohamed A. M. Mahmoud
{"title":"羟基自由基氧化醋酸异丙酯的从头计算化学动力学","authors":"M. Abdel-Rahman, M. Shibl, A. Shiroudi, Mohamed A. M. Mahmoud","doi":"10.1080/17518253.2023.2233539","DOIUrl":null,"url":null,"abstract":"ABSTRACT Global reactivity descriptors of isopropyl acetate (IPA) and thermo-kinetic aspects of its oxidation via OH radicals have been studied. Transition state theory (TST) was utilized to estimate the bimolecular rate constants. Ten oxidation pathways have been investigated, and all of them are exothermic. The potential energy diagram has been sketched using different pre- and post-reactive complexes for all reaction pathways. Rate coefficient calculations were obtained directly by connecting the separated reactants with different transition states. The results indicate that the reaction of IPA with OH radicals occurs in the ground state rather than the excited state, and the rate constants obtained directly and from the effective approach are the same, which confirmed the accuracy of the estimated pre-reactive complexes and the reaction mechanism. Rate constants and branching ratios show that hydrogen atom abstraction from the iso C − H (C2 atom) bond is the most kinetically preferable route up to 1000 K, while at higher temperatures, H-atom abstraction from the out-of-plane CH3 group (C3 atom) became the most dominant route with high competition with that of the in-plane CH3 group (C4 atom). GRAPHICAL ABSTRACT","PeriodicalId":12768,"journal":{"name":"Green Chemistry Letters and Reviews","volume":"83 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ab initio chemical kinetics of Isopropyl acetate oxidation with OH radicals\",\"authors\":\"M. Abdel-Rahman, M. Shibl, A. Shiroudi, Mohamed A. M. Mahmoud\",\"doi\":\"10.1080/17518253.2023.2233539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Global reactivity descriptors of isopropyl acetate (IPA) and thermo-kinetic aspects of its oxidation via OH radicals have been studied. Transition state theory (TST) was utilized to estimate the bimolecular rate constants. Ten oxidation pathways have been investigated, and all of them are exothermic. The potential energy diagram has been sketched using different pre- and post-reactive complexes for all reaction pathways. Rate coefficient calculations were obtained directly by connecting the separated reactants with different transition states. The results indicate that the reaction of IPA with OH radicals occurs in the ground state rather than the excited state, and the rate constants obtained directly and from the effective approach are the same, which confirmed the accuracy of the estimated pre-reactive complexes and the reaction mechanism. Rate constants and branching ratios show that hydrogen atom abstraction from the iso C − H (C2 atom) bond is the most kinetically preferable route up to 1000 K, while at higher temperatures, H-atom abstraction from the out-of-plane CH3 group (C3 atom) became the most dominant route with high competition with that of the in-plane CH3 group (C4 atom). GRAPHICAL ABSTRACT\",\"PeriodicalId\":12768,\"journal\":{\"name\":\"Green Chemistry Letters and Reviews\",\"volume\":\"83 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry Letters and Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/17518253.2023.2233539\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry Letters and Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/17518253.2023.2233539","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ab initio chemical kinetics of Isopropyl acetate oxidation with OH radicals
ABSTRACT Global reactivity descriptors of isopropyl acetate (IPA) and thermo-kinetic aspects of its oxidation via OH radicals have been studied. Transition state theory (TST) was utilized to estimate the bimolecular rate constants. Ten oxidation pathways have been investigated, and all of them are exothermic. The potential energy diagram has been sketched using different pre- and post-reactive complexes for all reaction pathways. Rate coefficient calculations were obtained directly by connecting the separated reactants with different transition states. The results indicate that the reaction of IPA with OH radicals occurs in the ground state rather than the excited state, and the rate constants obtained directly and from the effective approach are the same, which confirmed the accuracy of the estimated pre-reactive complexes and the reaction mechanism. Rate constants and branching ratios show that hydrogen atom abstraction from the iso C − H (C2 atom) bond is the most kinetically preferable route up to 1000 K, while at higher temperatures, H-atom abstraction from the out-of-plane CH3 group (C3 atom) became the most dominant route with high competition with that of the in-plane CH3 group (C4 atom). GRAPHICAL ABSTRACT
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Chemistry Letters and Reviews
Green Chemistry Letters and Reviews CHEMISTRY, MULTIDISCIPLINARY-GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
CiteScore
9.10
自引率
3.00%
发文量
48
期刊介绍: Green Chemistry Letters and Reviews is an Open Access, peer-reviewed journal focused on rapid publication of innovative new syntheses and procedures that reduce or eliminate the use and generation of hazardous materials. Reviews of state-of-the-art green chemistry technologies are also included within the journal''s scope. Green Chemistry Letters and Reviews is divided into three overlapping topic areas: research, education, and industrial implementation. The journal publishes both letters, which concisely communicate the most time-sensitive results, and reviews, which aid researchers in understanding the state of science on important green chemistry topics. Submissions are encouraged which apply the 12 principles of green chemistry to: -Green Chemistry Education- Synthetic Reaction Pathways- Research and Process Analytical Techniques- Separation and Purification Technologies- Renewable Feedstocks- Degradable Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信