用协调抛物综合实现单精度浮点平方根单位

Süleyman Savas, Y. Atwa, T. Nordström, Z. Ul-Abdin
{"title":"用协调抛物综合实现单精度浮点平方根单位","authors":"Süleyman Savas, Y. Atwa, T. Nordström, Z. Ul-Abdin","doi":"10.1109/ISVLSI.2019.00116","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel method for performing square root operation on floating-point numbers represented in IEEE-754 single-precision (binary32) format. The method is implemented using Harmonized Parabolic Synthesis. It is implemented with and without pipeline stages individually and synthesized for two different Xilinx FPGA boards. The implementations show better resource usage and latency results when compared to other similar works including Xilinx intellectual property (IP) that uses the CORDIC method. Any method calculating the square root will make approximation errors. Unless these errors are distributed evenly around zero, they can accumulate and give a biased result. An attractive feature of the proposed method is the fact that it distributes the errors evenly around zero, in contrast to CORDIC for instance. Due to the small size, low latency, high throughput, and good error properties, the presented floating-point square root unit is suitable for high performance embedded systems. It can be integrated into a processor's floating point unit or be used as a stand-alone accelerator.","PeriodicalId":6703,"journal":{"name":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"64 1","pages":"621-626"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Using Harmonized Parabolic Synthesis to Implement a Single-Precision Floating-Point Square Root Unit\",\"authors\":\"Süleyman Savas, Y. Atwa, T. Nordström, Z. Ul-Abdin\",\"doi\":\"10.1109/ISVLSI.2019.00116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel method for performing square root operation on floating-point numbers represented in IEEE-754 single-precision (binary32) format. The method is implemented using Harmonized Parabolic Synthesis. It is implemented with and without pipeline stages individually and synthesized for two different Xilinx FPGA boards. The implementations show better resource usage and latency results when compared to other similar works including Xilinx intellectual property (IP) that uses the CORDIC method. Any method calculating the square root will make approximation errors. Unless these errors are distributed evenly around zero, they can accumulate and give a biased result. An attractive feature of the proposed method is the fact that it distributes the errors evenly around zero, in contrast to CORDIC for instance. Due to the small size, low latency, high throughput, and good error properties, the presented floating-point square root unit is suitable for high performance embedded systems. It can be integrated into a processor's floating point unit or be used as a stand-alone accelerator.\",\"PeriodicalId\":6703,\"journal\":{\"name\":\"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"volume\":\"64 1\",\"pages\":\"621-626\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI.2019.00116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2019.00116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种对IEEE-754单精度(binary32)格式表示的浮点数进行平方根运算的新方法。该方法采用协调抛物线综合方法实现。它分别实现了有和没有流水线级,并为两个不同的Xilinx FPGA板合成。与其他类似的工作(包括使用CORDIC方法的Xilinx知识产权(IP))相比,这些实现显示出更好的资源使用和延迟结果。任何计算平方根的方法都会产生近似误差。除非这些误差均匀地分布在零附近,否则它们会累积并给出有偏差的结果。与CORDIC相比,该方法的一个吸引人的特点是它将误差均匀地分布在零附近。该浮点平方根单位具有体积小、时延低、吞吐量高、误差特性好等优点,适用于高性能嵌入式系统。它可以集成到处理器的浮点单元中,也可以用作独立的加速器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Harmonized Parabolic Synthesis to Implement a Single-Precision Floating-Point Square Root Unit
This paper proposes a novel method for performing square root operation on floating-point numbers represented in IEEE-754 single-precision (binary32) format. The method is implemented using Harmonized Parabolic Synthesis. It is implemented with and without pipeline stages individually and synthesized for two different Xilinx FPGA boards. The implementations show better resource usage and latency results when compared to other similar works including Xilinx intellectual property (IP) that uses the CORDIC method. Any method calculating the square root will make approximation errors. Unless these errors are distributed evenly around zero, they can accumulate and give a biased result. An attractive feature of the proposed method is the fact that it distributes the errors evenly around zero, in contrast to CORDIC for instance. Due to the small size, low latency, high throughput, and good error properties, the presented floating-point square root unit is suitable for high performance embedded systems. It can be integrated into a processor's floating point unit or be used as a stand-alone accelerator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信