Balsam Qubais Saeed , Mutasem Rawas Qalaji , Noor Akbar , Ruqaiyyah Siddiqui , Cagliani Roberta , Shaista Manzoor , Jibran Sualeh Muhammad , Ahmed Omar Adrees , Rula Al-Shahrabi , Naveed Ahmed Khan
{"title":"含5-氟尿嘧啶和氯喹纳米颗粒对卡斯特兰棘阿米巴活性的评价","authors":"Balsam Qubais Saeed , Mutasem Rawas Qalaji , Noor Akbar , Ruqaiyyah Siddiqui , Cagliani Roberta , Shaista Manzoor , Jibran Sualeh Muhammad , Ahmed Omar Adrees , Rula Al-Shahrabi , Naveed Ahmed Khan","doi":"10.1016/j.molbiopara.2022.111492","DOIUrl":null,"url":null,"abstract":"<div><p><span><em>Acanthamoeba</em></span> is opportunistic pathogens that cause vision-threatening <em>Acanthamoeba</em><span><span> keratitis (AK). Previous studies proposed the use of </span>chloroquine (CQ) and 5-fluorouracil (5FU) as anti-</span><em>Acanthamoeba</em> agents. The objective of this study was to determine the benefit of using 5FU and CQ nanoparticles (NP) formulations against <em>A. castellanii</em><span> that belonging to the T4 genotype and evaluate their anti-Acanthamoebic characteristic. Triplicate batches of 5FU nanoparticles (5FU-NP) were synthesized by using a modified nanoprecipitation method, while CQ nanoparticles (CQ-NP) synthesized using a modified double emulsion method. The synthesized nanoparticles were subjected to biological assays to investigate their amoebicidal, amoebistatic, anti-encystation, and anti-excystation effects against </span><em>A. castellanii</em><span><span>, as well as cell cytotoxicity. Cytotoxicity assays were performed using human </span>keratinocyte<span><span> cells (HaCaT) to determine the effect of CQ and 5FU nanoformulations on host cells. 5FU-NP with a concentration of 60 µM showed significant inhibition to amoeba binding into human cell lines and remarkable prevention mainly during the encystation stage. Moreover, 5FU-NP resulted in less cytotoxicity and </span>pathogenicity when compared with the free 5FU. On the other hand, CQ and CQ-NP, at the same concentration, showed poor inhibition to amoeba binding into human cells and insignificant prevention to encystation stage. Moderate human cells damage was resulted following their treatment with CQ and CQ-NP. In conclusion, 5FU may have the potential as an antiamoebic agent against </span></span><em>Acanthamoeba</em> spp. preferably as a nanoformulation to enhance its activity and reduce its cytoxicity.</p></div>","PeriodicalId":18721,"journal":{"name":"Molecular and biochemical parasitology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Evaluation of nanoparticles with 5-fluorouracil and chloroquine on Acanthamoeba castellanii activity\",\"authors\":\"Balsam Qubais Saeed , Mutasem Rawas Qalaji , Noor Akbar , Ruqaiyyah Siddiqui , Cagliani Roberta , Shaista Manzoor , Jibran Sualeh Muhammad , Ahmed Omar Adrees , Rula Al-Shahrabi , Naveed Ahmed Khan\",\"doi\":\"10.1016/j.molbiopara.2022.111492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><em>Acanthamoeba</em></span> is opportunistic pathogens that cause vision-threatening <em>Acanthamoeba</em><span><span> keratitis (AK). Previous studies proposed the use of </span>chloroquine (CQ) and 5-fluorouracil (5FU) as anti-</span><em>Acanthamoeba</em> agents. The objective of this study was to determine the benefit of using 5FU and CQ nanoparticles (NP) formulations against <em>A. castellanii</em><span> that belonging to the T4 genotype and evaluate their anti-Acanthamoebic characteristic. Triplicate batches of 5FU nanoparticles (5FU-NP) were synthesized by using a modified nanoprecipitation method, while CQ nanoparticles (CQ-NP) synthesized using a modified double emulsion method. The synthesized nanoparticles were subjected to biological assays to investigate their amoebicidal, amoebistatic, anti-encystation, and anti-excystation effects against </span><em>A. castellanii</em><span><span>, as well as cell cytotoxicity. Cytotoxicity assays were performed using human </span>keratinocyte<span><span> cells (HaCaT) to determine the effect of CQ and 5FU nanoformulations on host cells. 5FU-NP with a concentration of 60 µM showed significant inhibition to amoeba binding into human cell lines and remarkable prevention mainly during the encystation stage. Moreover, 5FU-NP resulted in less cytotoxicity and </span>pathogenicity when compared with the free 5FU. On the other hand, CQ and CQ-NP, at the same concentration, showed poor inhibition to amoeba binding into human cells and insignificant prevention to encystation stage. Moderate human cells damage was resulted following their treatment with CQ and CQ-NP. In conclusion, 5FU may have the potential as an antiamoebic agent against </span></span><em>Acanthamoeba</em> spp. preferably as a nanoformulation to enhance its activity and reduce its cytoxicity.</p></div>\",\"PeriodicalId\":18721,\"journal\":{\"name\":\"Molecular and biochemical parasitology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and biochemical parasitology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166685122000469\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and biochemical parasitology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166685122000469","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Evaluation of nanoparticles with 5-fluorouracil and chloroquine on Acanthamoeba castellanii activity
Acanthamoeba is opportunistic pathogens that cause vision-threatening Acanthamoeba keratitis (AK). Previous studies proposed the use of chloroquine (CQ) and 5-fluorouracil (5FU) as anti-Acanthamoeba agents. The objective of this study was to determine the benefit of using 5FU and CQ nanoparticles (NP) formulations against A. castellanii that belonging to the T4 genotype and evaluate their anti-Acanthamoebic characteristic. Triplicate batches of 5FU nanoparticles (5FU-NP) were synthesized by using a modified nanoprecipitation method, while CQ nanoparticles (CQ-NP) synthesized using a modified double emulsion method. The synthesized nanoparticles were subjected to biological assays to investigate their amoebicidal, amoebistatic, anti-encystation, and anti-excystation effects against A. castellanii, as well as cell cytotoxicity. Cytotoxicity assays were performed using human keratinocyte cells (HaCaT) to determine the effect of CQ and 5FU nanoformulations on host cells. 5FU-NP with a concentration of 60 µM showed significant inhibition to amoeba binding into human cell lines and remarkable prevention mainly during the encystation stage. Moreover, 5FU-NP resulted in less cytotoxicity and pathogenicity when compared with the free 5FU. On the other hand, CQ and CQ-NP, at the same concentration, showed poor inhibition to amoeba binding into human cells and insignificant prevention to encystation stage. Moderate human cells damage was resulted following their treatment with CQ and CQ-NP. In conclusion, 5FU may have the potential as an antiamoebic agent against Acanthamoeba spp. preferably as a nanoformulation to enhance its activity and reduce its cytoxicity.
期刊介绍:
The journal provides a medium for rapid publication of investigations of the molecular biology and biochemistry of parasitic protozoa and helminths and their interactions with both the definitive and intermediate host. The main subject areas covered are:
• the structure, biosynthesis, degradation, properties and function of DNA, RNA, proteins, lipids, carbohydrates and small molecular-weight substances
• intermediary metabolism and bioenergetics
• drug target characterization and the mode of action of antiparasitic drugs
• molecular and biochemical aspects of membrane structure and function
• host-parasite relationships that focus on the parasite, particularly as related to specific parasite molecules.
• analysis of genes and genome structure, function and expression
• analysis of variation in parasite populations relevant to genetic exchange, pathogenesis, drug and vaccine target characterization, and drug resistance.
• parasite protein trafficking, organelle biogenesis, and cellular structure especially with reference to the roles of specific molecules
• parasite programmed cell death, development, and cell division at the molecular level.