F. Qian, Jinyue Li, Dongdong Zhao, Shenbao Jin, E. Mørtsell, Yanjun Li
{"title":"添加Cd对不同铝合金析出影响的比较研究","authors":"F. Qian, Jinyue Li, Dongdong Zhao, Shenbao Jin, E. Mørtsell, Yanjun Li","doi":"10.1080/02670836.2023.2207368","DOIUrl":null,"url":null,"abstract":"This work demonstrates that Cd microadditions can enhance the precipitation of age-hardening precipitates in 2xxx and 6xxx alloys as well as the dispersoid precipitation in 3xxx alloys, but have a minimal effect on the precipitation in 7xxx alloys. Experimental and theoretical methods are utilised to investigate the nucleation and precipitation of precipitates/dispersoids in Cd-containing Al alloys. The enhanced precipitation of θ′ and α-dispersoids in 2xxx and 3xxx alloys, respectively, are proposed to result from the heterogeneous nucleation on earlier-formed Cd-rich nanoparticles, while the enhanced precipitation of β′′ in 6xxx alloys is attributed to the increased number density of effective Mg-Si co-clusters due to the Cd incorporation. This investigation provides theoretical basis for the design of precipitation-strengthened Al alloys via microalloying.","PeriodicalId":18232,"journal":{"name":"Materials Science and Technology","volume":"56 1","pages":"2469 - 2477"},"PeriodicalIF":1.7000,"publicationDate":"2023-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative study of Cd addition effects on precipitation in different aluminium alloys\",\"authors\":\"F. Qian, Jinyue Li, Dongdong Zhao, Shenbao Jin, E. Mørtsell, Yanjun Li\",\"doi\":\"10.1080/02670836.2023.2207368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work demonstrates that Cd microadditions can enhance the precipitation of age-hardening precipitates in 2xxx and 6xxx alloys as well as the dispersoid precipitation in 3xxx alloys, but have a minimal effect on the precipitation in 7xxx alloys. Experimental and theoretical methods are utilised to investigate the nucleation and precipitation of precipitates/dispersoids in Cd-containing Al alloys. The enhanced precipitation of θ′ and α-dispersoids in 2xxx and 3xxx alloys, respectively, are proposed to result from the heterogeneous nucleation on earlier-formed Cd-rich nanoparticles, while the enhanced precipitation of β′′ in 6xxx alloys is attributed to the increased number density of effective Mg-Si co-clusters due to the Cd incorporation. This investigation provides theoretical basis for the design of precipitation-strengthened Al alloys via microalloying.\",\"PeriodicalId\":18232,\"journal\":{\"name\":\"Materials Science and Technology\",\"volume\":\"56 1\",\"pages\":\"2469 - 2477\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/02670836.2023.2207368\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02670836.2023.2207368","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Comparative study of Cd addition effects on precipitation in different aluminium alloys
This work demonstrates that Cd microadditions can enhance the precipitation of age-hardening precipitates in 2xxx and 6xxx alloys as well as the dispersoid precipitation in 3xxx alloys, but have a minimal effect on the precipitation in 7xxx alloys. Experimental and theoretical methods are utilised to investigate the nucleation and precipitation of precipitates/dispersoids in Cd-containing Al alloys. The enhanced precipitation of θ′ and α-dispersoids in 2xxx and 3xxx alloys, respectively, are proposed to result from the heterogeneous nucleation on earlier-formed Cd-rich nanoparticles, while the enhanced precipitation of β′′ in 6xxx alloys is attributed to the increased number density of effective Mg-Si co-clusters due to the Cd incorporation. This investigation provides theoretical basis for the design of precipitation-strengthened Al alloys via microalloying.
期刊介绍:
《Materials Science and Technology》(MST) is an international forum for the publication of refereed contributions covering fundamental and technological aspects of materials science and engineering.