{"title":"混线形圆和混线形圆","authors":"Mikołaj Pater, Robert Sochacki","doi":"10.24917/20809751.14.2","DOIUrl":null,"url":null,"abstract":"Many theorems concerning incircle of a random triangle can be transferred by analogy onto it's excircle. In the following paper we aim to show analogies between mixtilinear incircle and mixtilinear excircle by presenting variants of theorems proved in (Pater, Sochacki, 2020).","PeriodicalId":33912,"journal":{"name":"Annales Universitatis Paedagogicae Cracoviensis Studia Naturae","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The mixtilinear excircle vs the mixtilinear incircle\",\"authors\":\"Mikołaj Pater, Robert Sochacki\",\"doi\":\"10.24917/20809751.14.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many theorems concerning incircle of a random triangle can be transferred by analogy onto it's excircle. In the following paper we aim to show analogies between mixtilinear incircle and mixtilinear excircle by presenting variants of theorems proved in (Pater, Sochacki, 2020).\",\"PeriodicalId\":33912,\"journal\":{\"name\":\"Annales Universitatis Paedagogicae Cracoviensis Studia Naturae\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Universitatis Paedagogicae Cracoviensis Studia Naturae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24917/20809751.14.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Universitatis Paedagogicae Cracoviensis Studia Naturae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24917/20809751.14.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The mixtilinear excircle vs the mixtilinear incircle
Many theorems concerning incircle of a random triangle can be transferred by analogy onto it's excircle. In the following paper we aim to show analogies between mixtilinear incircle and mixtilinear excircle by presenting variants of theorems proved in (Pater, Sochacki, 2020).