瓜尔胶包封小檗碱纳米复合物的合成、表征及抗糖尿病活性评价

IF 2.1 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
J. Bakshi, M. Mehra, S. Grewal, D. Dhingra, S. Kumari
{"title":"瓜尔胶包封小檗碱纳米复合物的合成、表征及抗糖尿病活性评价","authors":"J. Bakshi, M. Mehra, S. Grewal, D. Dhingra, S. Kumari","doi":"10.1177/08839115221106700","DOIUrl":null,"url":null,"abstract":"In the present study, the anti-diabetic and antimicrobial properties of berberine were improved using non-ionic guar gum and ionic acacia gum as nanocarriers. Berberine loaded guar-acacia gum nanocomplexes were synthesized by employing ionic complexation method. The formulation was characterized by dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM) and evaluated for in vitro dissolution study, anti-diabetic activity and antimicrobial activity. The optimized berberine loaded guar-acacia gum nanocomplexes had a particle size of 290.2 nm as indicated by DLS and drug entrapment efficiency of 96.5%. Morphological analysis revealed that berberine nanocomplexes were spherical-shaped with a smooth surface and size in the range of 100–250 nm. Moreover, berberine loaded guar-acacia nanocomplexes showed good stability and controlled released property in vitro. Antimicrobial activity against bacterial strains and fungal strains demonstrated the higher antimicrobial potential of berberine loaded gum nanocomplexes than gum nanocomplexes (blank) and pure berberine as indicated by the greater zone of inhibition diameter. In vitro anti-diabetic assessment showed higher percentage inhibition of the α-amylase enzyme by berberine loaded gum nanocomplexes as compared to pure berberine and blank nanocomplexes. In conclusion, the improved biological potency of berberine upon encapsulation into gum nanocomplexes indicates that berberine loaded guar-acacia gum nanocomplexes can be used as a promising candidate against diabetes and pathogenic microorganisms in the near future.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synthesis, characterization and evaluation of in vitro antimicrobial and anti-diabetic activity of berberine encapsulated in guar-acacia gum nanocomplexes\",\"authors\":\"J. Bakshi, M. Mehra, S. Grewal, D. Dhingra, S. Kumari\",\"doi\":\"10.1177/08839115221106700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study, the anti-diabetic and antimicrobial properties of berberine were improved using non-ionic guar gum and ionic acacia gum as nanocarriers. Berberine loaded guar-acacia gum nanocomplexes were synthesized by employing ionic complexation method. The formulation was characterized by dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM) and evaluated for in vitro dissolution study, anti-diabetic activity and antimicrobial activity. The optimized berberine loaded guar-acacia gum nanocomplexes had a particle size of 290.2 nm as indicated by DLS and drug entrapment efficiency of 96.5%. Morphological analysis revealed that berberine nanocomplexes were spherical-shaped with a smooth surface and size in the range of 100–250 nm. Moreover, berberine loaded guar-acacia nanocomplexes showed good stability and controlled released property in vitro. Antimicrobial activity against bacterial strains and fungal strains demonstrated the higher antimicrobial potential of berberine loaded gum nanocomplexes than gum nanocomplexes (blank) and pure berberine as indicated by the greater zone of inhibition diameter. In vitro anti-diabetic assessment showed higher percentage inhibition of the α-amylase enzyme by berberine loaded gum nanocomplexes as compared to pure berberine and blank nanocomplexes. In conclusion, the improved biological potency of berberine upon encapsulation into gum nanocomplexes indicates that berberine loaded guar-acacia gum nanocomplexes can be used as a promising candidate against diabetes and pathogenic microorganisms in the near future.\",\"PeriodicalId\":15038,\"journal\":{\"name\":\"Journal of Bioactive and Compatible Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioactive and Compatible Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08839115221106700\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioactive and Compatible Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08839115221106700","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

本研究以非离子型瓜尔胶和离子型阿拉伯胶为纳米载体,提高了小檗碱的抗糖尿病和抗菌性能。采用离子络合法制备了载小檗碱的瓜尔金合子胶纳米配合物。采用动态光散射(DLS)、傅里叶红外光谱(FTIR)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)对该制剂进行了表征,并对其体外溶出度、抗糖尿病活性和抗菌活性进行了评价。经DLS检测,优化后的瓜尔金合子胶纳米配合物粒径为290.2 nm,包封率为96.5%。形态分析表明,小檗碱纳米配合物为球形,表面光滑,尺寸在100 ~ 250 nm之间。此外,含有小檗碱的瓜尔金合欢纳米配合物具有良好的体外稳定性和控释性能。对细菌和真菌的抑菌活性表明,负载小檗碱的胶纳米复合物比空白胶纳米复合物和纯小檗碱具有更高的抑菌潜力,其抑制区直径更大。体外抗糖尿病评估显示,与纯小檗碱和空白纳米复合物相比,含有小檗碱的口香糖纳米复合物对α-淀粉酶的抑制率更高。综上所述,小檗碱包被胶纳米复合物后的生物效力得到了提高,这表明小檗碱负载瓜尔金合子胶纳米复合物在不久的将来有望成为抗糖尿病和致病微生物的候选药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis, characterization and evaluation of in vitro antimicrobial and anti-diabetic activity of berberine encapsulated in guar-acacia gum nanocomplexes
In the present study, the anti-diabetic and antimicrobial properties of berberine were improved using non-ionic guar gum and ionic acacia gum as nanocarriers. Berberine loaded guar-acacia gum nanocomplexes were synthesized by employing ionic complexation method. The formulation was characterized by dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM) and evaluated for in vitro dissolution study, anti-diabetic activity and antimicrobial activity. The optimized berberine loaded guar-acacia gum nanocomplexes had a particle size of 290.2 nm as indicated by DLS and drug entrapment efficiency of 96.5%. Morphological analysis revealed that berberine nanocomplexes were spherical-shaped with a smooth surface and size in the range of 100–250 nm. Moreover, berberine loaded guar-acacia nanocomplexes showed good stability and controlled released property in vitro. Antimicrobial activity against bacterial strains and fungal strains demonstrated the higher antimicrobial potential of berberine loaded gum nanocomplexes than gum nanocomplexes (blank) and pure berberine as indicated by the greater zone of inhibition diameter. In vitro anti-diabetic assessment showed higher percentage inhibition of the α-amylase enzyme by berberine loaded gum nanocomplexes as compared to pure berberine and blank nanocomplexes. In conclusion, the improved biological potency of berberine upon encapsulation into gum nanocomplexes indicates that berberine loaded guar-acacia gum nanocomplexes can be used as a promising candidate against diabetes and pathogenic microorganisms in the near future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bioactive and Compatible Polymers
Journal of Bioactive and Compatible Polymers 工程技术-材料科学:生物材料
CiteScore
3.50
自引率
0.00%
发文量
27
审稿时长
2 months
期刊介绍: The use and importance of biomedical polymers, especially in pharmacology, is growing rapidly. The Journal of Bioactive and Compatible Polymers is a fully peer-reviewed scholarly journal that provides biomedical polymer scientists and researchers with new information on important advances in this field. Examples of specific areas of interest to the journal include: polymeric drugs and drug design; polymeric functionalization and structures related to biological activity or compatibility; natural polymer modification to achieve specific biological activity or compatibility; enzyme modelling by polymers; membranes for biological use; liposome stabilization and cell modeling. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信