基于小波循环自旋和非局部均值滤波的图像去噪

IF 0.7 Q3 COMPUTER SCIENCE, THEORY & METHODS
Giat Karyono, Asmala Ahmad, S. A. Asmai
{"title":"基于小波循环自旋和非局部均值滤波的图像去噪","authors":"Giat Karyono, Asmala Ahmad, S. A. Asmai","doi":"10.14569/ijacsa.2023.0140356","DOIUrl":null,"url":null,"abstract":"—Removing as much noise as possible in an image while preserving its fine details is a complex and challenging task. We propose a wavelet-based and non-local means (NLM) denoising method to overcome the problem. Two well-known wavelets: dual-tree complex wavelet transform (DT-CWT) and discrete wavelet transform (DWT), have been used to change the noise image into several wavelet coefficients sequentially. NLM filtering and universal hard thresholding with cycle spinning have been used for thresholding on its approximation and detail coefficients, respectively. The inverse two-dimensional DWT was applied to the modified wavelet coefficients to obtain the denoised image. We conducted experiments with twelve test images on the set12 data set, adding the additive Gaussian white noise with variances of 10 to 90 in increments of 10. Three evaluation metrics, such as peak signal noise to rate (PSNR), structural similarity index metric (SSIM), and mean square error (MSE), have been used to evaluate the effectiveness of the proposed denoising method. From these measurement results, the proposed denoising method outperforms DT-CWT, DWT, and NLM almost in all noise levels except for the noise level of 10. At that noise level, the proposed denoising method is lower than NLM but better than DT-CWT and DWT.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image Denoising using Wavelet Cycle Spinning and Non-local Means Filter\",\"authors\":\"Giat Karyono, Asmala Ahmad, S. A. Asmai\",\"doi\":\"10.14569/ijacsa.2023.0140356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"—Removing as much noise as possible in an image while preserving its fine details is a complex and challenging task. We propose a wavelet-based and non-local means (NLM) denoising method to overcome the problem. Two well-known wavelets: dual-tree complex wavelet transform (DT-CWT) and discrete wavelet transform (DWT), have been used to change the noise image into several wavelet coefficients sequentially. NLM filtering and universal hard thresholding with cycle spinning have been used for thresholding on its approximation and detail coefficients, respectively. The inverse two-dimensional DWT was applied to the modified wavelet coefficients to obtain the denoised image. We conducted experiments with twelve test images on the set12 data set, adding the additive Gaussian white noise with variances of 10 to 90 in increments of 10. Three evaluation metrics, such as peak signal noise to rate (PSNR), structural similarity index metric (SSIM), and mean square error (MSE), have been used to evaluate the effectiveness of the proposed denoising method. From these measurement results, the proposed denoising method outperforms DT-CWT, DWT, and NLM almost in all noise levels except for the noise level of 10. At that noise level, the proposed denoising method is lower than NLM but better than DT-CWT and DWT.\",\"PeriodicalId\":13824,\"journal\":{\"name\":\"International Journal of Advanced Computer Science and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Computer Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14569/ijacsa.2023.0140356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2023.0140356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

-在保留图像细节的同时尽可能多地去除图像中的噪点是一项复杂而具有挑战性的任务。我们提出了一种基于小波的非局部均值去噪方法来克服这一问题。利用双树复小波变换(DT-CWT)和离散小波变换(DWT)将噪声图像依次变换成多个小波系数。分别采用NLM滤波和循环纺丝通用硬阈值法对其逼近系数和细节系数进行阈值设定。对修改后的小波系数进行逆二维小波变换,得到去噪后的图像。我们在set12数据集上使用12张测试图像进行实验,以10为增量加入方差为10 ~ 90的加性高斯白噪声。采用峰值信噪比(PSNR)、结构相似度指标(SSIM)和均方误差(MSE)三个评价指标来评价所提出的去噪方法的有效性。从这些测量结果来看,除了噪声级别为10之外,所提出的去噪方法几乎在所有噪声级别上都优于DT-CWT、DWT和NLM。在该噪声水平下,该方法的去噪效果低于NLM,但优于DT-CWT和DWT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image Denoising using Wavelet Cycle Spinning and Non-local Means Filter
—Removing as much noise as possible in an image while preserving its fine details is a complex and challenging task. We propose a wavelet-based and non-local means (NLM) denoising method to overcome the problem. Two well-known wavelets: dual-tree complex wavelet transform (DT-CWT) and discrete wavelet transform (DWT), have been used to change the noise image into several wavelet coefficients sequentially. NLM filtering and universal hard thresholding with cycle spinning have been used for thresholding on its approximation and detail coefficients, respectively. The inverse two-dimensional DWT was applied to the modified wavelet coefficients to obtain the denoised image. We conducted experiments with twelve test images on the set12 data set, adding the additive Gaussian white noise with variances of 10 to 90 in increments of 10. Three evaluation metrics, such as peak signal noise to rate (PSNR), structural similarity index metric (SSIM), and mean square error (MSE), have been used to evaluate the effectiveness of the proposed denoising method. From these measurement results, the proposed denoising method outperforms DT-CWT, DWT, and NLM almost in all noise levels except for the noise level of 10. At that noise level, the proposed denoising method is lower than NLM but better than DT-CWT and DWT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
22.20%
发文量
519
期刊介绍: IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信