Ricci孤子中位向量场有限全局范数的存在性

IF 0.8 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Absos Ali Shaikh, Prosenjit Mandal, Chandan Kumar Mondal
{"title":"Ricci孤子中位向量场有限全局范数的存在性","authors":"Absos Ali Shaikh,&nbsp;Prosenjit Mandal,&nbsp;Chandan Kumar Mondal","doi":"10.1007/s40010-023-00839-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present global norm of potential vector field in Ricci soliton. In particular, we deduce certain conditions so that the potential vector field has finite global norm in expanding Ricci soliton. In addition, we show that if the potential vector field has finite global norm in complete non-compact Ricci soliton having finite volume, then the scalar curvature becomes constant.</p></div>","PeriodicalId":744,"journal":{"name":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","volume":"93 4","pages":"671 - 674"},"PeriodicalIF":0.8000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Existence of Finite Global Norm of Potential Vector Field in a Ricci Soliton\",\"authors\":\"Absos Ali Shaikh,&nbsp;Prosenjit Mandal,&nbsp;Chandan Kumar Mondal\",\"doi\":\"10.1007/s40010-023-00839-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we present global norm of potential vector field in Ricci soliton. In particular, we deduce certain conditions so that the potential vector field has finite global norm in expanding Ricci soliton. In addition, we show that if the potential vector field has finite global norm in complete non-compact Ricci soliton having finite volume, then the scalar curvature becomes constant.</p></div>\",\"PeriodicalId\":744,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences\",\"volume\":\"93 4\",\"pages\":\"671 - 674\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40010-023-00839-7\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s40010-023-00839-7","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 2

摘要

本文给出了Ricci孤子中位向量场的全局范数。特别地,我们推导了膨胀Ricci孤子中位向量场具有有限全局范数的若干条件。此外,我们还证明了在有限体积的完全非紧Ricci孤子中,如果势向量场具有有限全局范数,则标量曲率变为常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of Finite Global Norm of Potential Vector Field in a Ricci Soliton

In this paper, we present global norm of potential vector field in Ricci soliton. In particular, we deduce certain conditions so that the potential vector field has finite global norm in expanding Ricci soliton. In addition, we show that if the potential vector field has finite global norm in complete non-compact Ricci soliton having finite volume, then the scalar curvature becomes constant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: To promote research in all the branches of Science & Technology; and disseminate the knowledge and advancements in Science & Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信