{"title":"鉴定上皮干细胞的方法","authors":"Youngtae Jeong","doi":"10.51335/organoid.2022.2.e24","DOIUrl":null,"url":null,"abstract":"Epithelial tissue is a tissue type that mainly covers the surfaces of the body and organs. Most epithelial tissues are composed of highly proliferative cells, necessitating robust stem cell activity. Epithelial tissue is also the most common site of cancers. Therefore, identifying epithelial stem cells and their self-renewal mechanisms is a prerequisite for promoting epithelial homeostasis, understanding cancer pathogenesis, and developing regenerative therapy and cancer prevention. Over the decades, diverse experimental techniques have been developed to identify epithelial stem cells in many organs and their self-renewal mechanisms from different angles. This review briefly introduces the various experimental methods used in stem cell identification, their rationales, and examples applying those tools to tissue stem cell identification.","PeriodicalId":100198,"journal":{"name":"Brain Organoid and Systems Neuroscience Journal","volume":"116 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methods to identify epithelial stem cells\",\"authors\":\"Youngtae Jeong\",\"doi\":\"10.51335/organoid.2022.2.e24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epithelial tissue is a tissue type that mainly covers the surfaces of the body and organs. Most epithelial tissues are composed of highly proliferative cells, necessitating robust stem cell activity. Epithelial tissue is also the most common site of cancers. Therefore, identifying epithelial stem cells and their self-renewal mechanisms is a prerequisite for promoting epithelial homeostasis, understanding cancer pathogenesis, and developing regenerative therapy and cancer prevention. Over the decades, diverse experimental techniques have been developed to identify epithelial stem cells in many organs and their self-renewal mechanisms from different angles. This review briefly introduces the various experimental methods used in stem cell identification, their rationales, and examples applying those tools to tissue stem cell identification.\",\"PeriodicalId\":100198,\"journal\":{\"name\":\"Brain Organoid and Systems Neuroscience Journal\",\"volume\":\"116 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Organoid and Systems Neuroscience Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51335/organoid.2022.2.e24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Organoid and Systems Neuroscience Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51335/organoid.2022.2.e24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Epithelial tissue is a tissue type that mainly covers the surfaces of the body and organs. Most epithelial tissues are composed of highly proliferative cells, necessitating robust stem cell activity. Epithelial tissue is also the most common site of cancers. Therefore, identifying epithelial stem cells and their self-renewal mechanisms is a prerequisite for promoting epithelial homeostasis, understanding cancer pathogenesis, and developing regenerative therapy and cancer prevention. Over the decades, diverse experimental techniques have been developed to identify epithelial stem cells in many organs and their self-renewal mechanisms from different angles. This review briefly introduces the various experimental methods used in stem cell identification, their rationales, and examples applying those tools to tissue stem cell identification.