Yimin Deng, R. Dewil, L. Appels, Huili Zhang, Shuo Li, J. Baeyens
{"title":"精确定义和测量粒子性质的必要性","authors":"Yimin Deng, R. Dewil, L. Appels, Huili Zhang, Shuo Li, J. Baeyens","doi":"10.3390/standards1010004","DOIUrl":null,"url":null,"abstract":"When dealing with powders, a fundamental knowledge of their physical parameters is indispensable, with different methods and approaches proposed in literature. Results obtained differ widely and it is important to define standards to be applied, both toward the methods of investigation and the interpretation of experimental results. The present research intends to propose such standards, while defining general rules to be respected. Firstly, the problem of defining the particle size is inspected. It was found that describing the size of a particle is not as straightforward as one might suspect. Factors of non-sphericity and size distributions make it impossible to put ‘size’ in just one number. Whereas sieving can be used for coarser particles of a size in excess of about 50 µm, instrumental techniques span a wide size range. For fine particles, the occurrence of cohesive forces needs to be overcome and solvents, dispersants and sample mixing need to be applied. Secondly, the shape of the particles is examined. By defining sphericity, irregularly shaped particles are described. Finally, the density of particles, of particle assemblies and their voidage (volume fraction of voids) and the different ways to investigate them are explored.","PeriodicalId":21933,"journal":{"name":"Standards","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"The Need to Accurately Define and Measure the Properties of Particles\",\"authors\":\"Yimin Deng, R. Dewil, L. Appels, Huili Zhang, Shuo Li, J. Baeyens\",\"doi\":\"10.3390/standards1010004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When dealing with powders, a fundamental knowledge of their physical parameters is indispensable, with different methods and approaches proposed in literature. Results obtained differ widely and it is important to define standards to be applied, both toward the methods of investigation and the interpretation of experimental results. The present research intends to propose such standards, while defining general rules to be respected. Firstly, the problem of defining the particle size is inspected. It was found that describing the size of a particle is not as straightforward as one might suspect. Factors of non-sphericity and size distributions make it impossible to put ‘size’ in just one number. Whereas sieving can be used for coarser particles of a size in excess of about 50 µm, instrumental techniques span a wide size range. For fine particles, the occurrence of cohesive forces needs to be overcome and solvents, dispersants and sample mixing need to be applied. Secondly, the shape of the particles is examined. By defining sphericity, irregularly shaped particles are described. Finally, the density of particles, of particle assemblies and their voidage (volume fraction of voids) and the different ways to investigate them are explored.\",\"PeriodicalId\":21933,\"journal\":{\"name\":\"Standards\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Standards\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/standards1010004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Standards","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/standards1010004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Need to Accurately Define and Measure the Properties of Particles
When dealing with powders, a fundamental knowledge of their physical parameters is indispensable, with different methods and approaches proposed in literature. Results obtained differ widely and it is important to define standards to be applied, both toward the methods of investigation and the interpretation of experimental results. The present research intends to propose such standards, while defining general rules to be respected. Firstly, the problem of defining the particle size is inspected. It was found that describing the size of a particle is not as straightforward as one might suspect. Factors of non-sphericity and size distributions make it impossible to put ‘size’ in just one number. Whereas sieving can be used for coarser particles of a size in excess of about 50 µm, instrumental techniques span a wide size range. For fine particles, the occurrence of cohesive forces needs to be overcome and solvents, dispersants and sample mixing need to be applied. Secondly, the shape of the particles is examined. By defining sphericity, irregularly shaped particles are described. Finally, the density of particles, of particle assemblies and their voidage (volume fraction of voids) and the different ways to investigate them are explored.