有限置换群的第二类商

Pub Date : 2023-06-29 DOI:10.1515/jgth-2022-0214
H. Meng, Xiuyun Guo
{"title":"有限置换群的第二类商","authors":"H. Meng, Xiuyun Guo","doi":"10.1515/jgth-2022-0214","DOIUrl":null,"url":null,"abstract":"Abstract Let 𝐺 be a permutation group on a finite set and let 𝑝 be a prime. In this paper, we prove that the largest class-two 𝑝-quotient of 𝐺 has order at most p n / p p^{n/p} (or 2 3 ⁢ n / 4 2^{3n/4} if p = 2 p=2 ), where 𝑛 is the number of points moved by a Sylow 𝑝-subgroup of 𝐺. Further, we describe the groups whose largest class-two 𝑝-quotients can reach such a bound. This extends earlier work of Kovács and Praeger from 1989.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Class-two quotients of finite permutation groups\",\"authors\":\"H. Meng, Xiuyun Guo\",\"doi\":\"10.1515/jgth-2022-0214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let 𝐺 be a permutation group on a finite set and let 𝑝 be a prime. In this paper, we prove that the largest class-two 𝑝-quotient of 𝐺 has order at most p n / p p^{n/p} (or 2 3 ⁢ n / 4 2^{3n/4} if p = 2 p=2 ), where 𝑛 is the number of points moved by a Sylow 𝑝-subgroup of 𝐺. Further, we describe the groups whose largest class-two 𝑝-quotients can reach such a bound. This extends earlier work of Kovács and Praeger from 1989.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2022-0214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2022-0214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设𝐺是有限集合上的一个置换群,设𝑝是一个素数。本文证明了𝐺的最大二类𝑝-quotient的阶数最多为p n/p p^{n/p}(如果p=2 p=2,则为2 3 × n/4 × 2^{3n/4}),其中𝑛为𝐺的一个Sylow𝑝-subgroup移动的点数。进一步,我们描述了最大的二类𝑝-quotients可以达到这样一个界限的群。这延伸了Kovács和Praeger从1989年开始的早期工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Class-two quotients of finite permutation groups
Abstract Let 𝐺 be a permutation group on a finite set and let 𝑝 be a prime. In this paper, we prove that the largest class-two 𝑝-quotient of 𝐺 has order at most p n / p p^{n/p} (or 2 3 ⁢ n / 4 2^{3n/4} if p = 2 p=2 ), where 𝑛 is the number of points moved by a Sylow 𝑝-subgroup of 𝐺. Further, we describe the groups whose largest class-two 𝑝-quotients can reach such a bound. This extends earlier work of Kovács and Praeger from 1989.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信