应用神经网络和神经模糊系统对1290-MHz风廓线数据进行鸟类识别

H. Richner, R. Kretzschmar
{"title":"应用神经网络和神经模糊系统对1290-MHz风廓线数据进行鸟类识别","authors":"H. Richner,&nbsp;R. Kretzschmar","doi":"10.1016/S1464-1909(00)00237-9","DOIUrl":null,"url":null,"abstract":"<div><p>Migrating birds can severely affect data from wind profilers operating in the 1000 MHz range. Recent methods for removing bird contamination do not seem to solve the problem satisfactorily. Here, a new method, the Quantum Neurofuzzy Bird Identification and Removal Deck (NEURO-BIRD) is presented. The algorithm has an overall classification rate of over 90 % for birds, clear air returns, and rain echoes for single, one-second wind profiler spectra. Even with very heavy migration, high quality hourly winds can be obtained. Because the source of contamination of the spectra is unambiguously identified, bird data can be supplied for ornithological research. NEURO-BIRD is very fast and well suited for real-time applications.</p></div>","PeriodicalId":101025,"journal":{"name":"Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere","volume":"26 3","pages":"Pages 181-186"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1464-1909(00)00237-9","citationCount":"5","resultStr":"{\"title\":\"Bird identification on 1290-MHz wind profiler data applying neural networks and neurofuzzy systems\",\"authors\":\"H. Richner,&nbsp;R. Kretzschmar\",\"doi\":\"10.1016/S1464-1909(00)00237-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Migrating birds can severely affect data from wind profilers operating in the 1000 MHz range. Recent methods for removing bird contamination do not seem to solve the problem satisfactorily. Here, a new method, the Quantum Neurofuzzy Bird Identification and Removal Deck (NEURO-BIRD) is presented. The algorithm has an overall classification rate of over 90 % for birds, clear air returns, and rain echoes for single, one-second wind profiler spectra. Even with very heavy migration, high quality hourly winds can be obtained. Because the source of contamination of the spectra is unambiguously identified, bird data can be supplied for ornithological research. NEURO-BIRD is very fast and well suited for real-time applications.</p></div>\",\"PeriodicalId\":101025,\"journal\":{\"name\":\"Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere\",\"volume\":\"26 3\",\"pages\":\"Pages 181-186\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1464-1909(00)00237-9\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1464190900002379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1464190900002379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

候鸟会严重影响在1000兆赫范围内运行的风廓线仪的数据。最近清除鸟类污染的方法似乎不能令人满意地解决这个问题。本文提出了一种新的方法——量子神经模糊鸟类识别和去除甲板(neural - Bird)。该算法对鸟类、晴空回波和单次、一秒风廓线光谱的雨回波的总体分类率超过90%。即使有很大的迁移,也可以获得高质量的每小时风。由于光谱的污染源是明确的,因此可以为鸟类学研究提供鸟类数据。neurobird速度非常快,非常适合实时应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bird identification on 1290-MHz wind profiler data applying neural networks and neurofuzzy systems

Migrating birds can severely affect data from wind profilers operating in the 1000 MHz range. Recent methods for removing bird contamination do not seem to solve the problem satisfactorily. Here, a new method, the Quantum Neurofuzzy Bird Identification and Removal Deck (NEURO-BIRD) is presented. The algorithm has an overall classification rate of over 90 % for birds, clear air returns, and rain echoes for single, one-second wind profiler spectra. Even with very heavy migration, high quality hourly winds can be obtained. Because the source of contamination of the spectra is unambiguously identified, bird data can be supplied for ornithological research. NEURO-BIRD is very fast and well suited for real-time applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信