Jan de Mooij, P. Bhattacharya, Davide Dell’Anna, M. Dastani, B. Logan, S. Swarup
{"title":"在大规模基于主体的流行病模拟中模拟人类行为的框架","authors":"Jan de Mooij, P. Bhattacharya, Davide Dell’Anna, M. Dastani, B. Logan, S. Swarup","doi":"10.1177/00375497231184898","DOIUrl":null,"url":null,"abstract":"Agent-based modeling is increasingly being used in computational epidemiology to characterize important behavioral dimensions, such as the heterogeneity of the individual responses to interventions, when studying the spread of a disease. Existing agent-based simulation frameworks and platforms currently fall in one of two categories: those that can simulate millions of individuals with simple behaviors (e.g., based on simple state machines), and those that consider more complex and social behaviors (e.g., agents that act according to their own agenda and preferences, and deliberate about norm compliance) but, due to the computational complexity of reasoning involved, have limited scalability. In this paper, we present a novel framework that enables large-scale distributed epidemic simulations with complex behaving social agents whose decisions are based on a variety of concepts and internal attitudes such as sense, knowledge, preferences, norms, and plans. The proposed framework supports simulations with millions of such agents that can individually deliberate about their own knowledge, goals, and preferences, and can adapt their behavior based on other agents’ behaviors and on their attitude toward complying with norms. We showcase the applicability and scalability of the proposed framework by developing a model of the spread of COVID-19 in the US state of Virginia. Results illustrate that the framework can be effectively employed to simulate disease spreading with millions of complex behaving agents and investigate behavioral interventions over a period of time of months.","PeriodicalId":49516,"journal":{"name":"Simulation-Transactions of the Society for Modeling and Simulation International","volume":"72 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A framework for modeling human behavior in large-scale agent-based epidemic simulations\",\"authors\":\"Jan de Mooij, P. Bhattacharya, Davide Dell’Anna, M. Dastani, B. Logan, S. Swarup\",\"doi\":\"10.1177/00375497231184898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Agent-based modeling is increasingly being used in computational epidemiology to characterize important behavioral dimensions, such as the heterogeneity of the individual responses to interventions, when studying the spread of a disease. Existing agent-based simulation frameworks and platforms currently fall in one of two categories: those that can simulate millions of individuals with simple behaviors (e.g., based on simple state machines), and those that consider more complex and social behaviors (e.g., agents that act according to their own agenda and preferences, and deliberate about norm compliance) but, due to the computational complexity of reasoning involved, have limited scalability. In this paper, we present a novel framework that enables large-scale distributed epidemic simulations with complex behaving social agents whose decisions are based on a variety of concepts and internal attitudes such as sense, knowledge, preferences, norms, and plans. The proposed framework supports simulations with millions of such agents that can individually deliberate about their own knowledge, goals, and preferences, and can adapt their behavior based on other agents’ behaviors and on their attitude toward complying with norms. We showcase the applicability and scalability of the proposed framework by developing a model of the spread of COVID-19 in the US state of Virginia. Results illustrate that the framework can be effectively employed to simulate disease spreading with millions of complex behaving agents and investigate behavioral interventions over a period of time of months.\",\"PeriodicalId\":49516,\"journal\":{\"name\":\"Simulation-Transactions of the Society for Modeling and Simulation International\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Simulation-Transactions of the Society for Modeling and Simulation International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/00375497231184898\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation-Transactions of the Society for Modeling and Simulation International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/00375497231184898","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A framework for modeling human behavior in large-scale agent-based epidemic simulations
Agent-based modeling is increasingly being used in computational epidemiology to characterize important behavioral dimensions, such as the heterogeneity of the individual responses to interventions, when studying the spread of a disease. Existing agent-based simulation frameworks and platforms currently fall in one of two categories: those that can simulate millions of individuals with simple behaviors (e.g., based on simple state machines), and those that consider more complex and social behaviors (e.g., agents that act according to their own agenda and preferences, and deliberate about norm compliance) but, due to the computational complexity of reasoning involved, have limited scalability. In this paper, we present a novel framework that enables large-scale distributed epidemic simulations with complex behaving social agents whose decisions are based on a variety of concepts and internal attitudes such as sense, knowledge, preferences, norms, and plans. The proposed framework supports simulations with millions of such agents that can individually deliberate about their own knowledge, goals, and preferences, and can adapt their behavior based on other agents’ behaviors and on their attitude toward complying with norms. We showcase the applicability and scalability of the proposed framework by developing a model of the spread of COVID-19 in the US state of Virginia. Results illustrate that the framework can be effectively employed to simulate disease spreading with millions of complex behaving agents and investigate behavioral interventions over a period of time of months.
期刊介绍:
SIMULATION is a peer-reviewed journal, which covers subjects including the modelling and simulation of: computer networking and communications, high performance computers, real-time systems, mobile and intelligent agents, simulation software, and language design, system engineering and design, aerospace, traffic systems, microelectronics, robotics, mechatronics, and air traffic and chemistry, physics, biology, medicine, biomedicine, sociology, and cognition.