Safa Riyadh Waheed, S. M. Saadi, Mohd Shafry Mohd Rahim, Norhaida Mohd Suaib, Fallah H Najjar, M. M. Adnan, Ali Aqeel Salim
{"title":"基于CNN深度学习算法的黑色素瘤皮肤癌分类","authors":"Safa Riyadh Waheed, S. M. Saadi, Mohd Shafry Mohd Rahim, Norhaida Mohd Suaib, Fallah H Najjar, M. M. Adnan, Ali Aqeel Salim","doi":"10.11113/mjfas.v19n3.2900","DOIUrl":null,"url":null,"abstract":"Melanoma, the deadliest form of skin cancer, is on the rise. The goal of this study is to present a deep learning system implementation for the detection of melanoma lesions on a server equipped with a graphics processing unit (GPU). When applied by a dermatologist, the recommended method might aid in the early detection of this kind of skin cancer. Evidence shows that deep learning may be used in a variety of settings to successfully extract patterns from data such as signals and images. This research presents a convolution neural network–based strategy for identifying early-stage melanoma skin cancer. Images are input into a deep learning model known as a convolutional neural network (CNN) that has already been pre-trained. The CNN classifier, which is trained with large amounts of data, can discriminate between malignant and nonmalignant melanoma. The method's success in the lab bodes well for its potential to aid dermatologists in the early detection of melanoma. However, the experimental results show that the proposed technique excels beyond the state-of-the-art methods in terms of diagnostic accuracy.","PeriodicalId":18149,"journal":{"name":"Malaysian Journal of Fundamental and Applied Sciences","volume":"42 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Melanoma Skin Cancer Classification based on CNN Deep Learning Algorithms\",\"authors\":\"Safa Riyadh Waheed, S. M. Saadi, Mohd Shafry Mohd Rahim, Norhaida Mohd Suaib, Fallah H Najjar, M. M. Adnan, Ali Aqeel Salim\",\"doi\":\"10.11113/mjfas.v19n3.2900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Melanoma, the deadliest form of skin cancer, is on the rise. The goal of this study is to present a deep learning system implementation for the detection of melanoma lesions on a server equipped with a graphics processing unit (GPU). When applied by a dermatologist, the recommended method might aid in the early detection of this kind of skin cancer. Evidence shows that deep learning may be used in a variety of settings to successfully extract patterns from data such as signals and images. This research presents a convolution neural network–based strategy for identifying early-stage melanoma skin cancer. Images are input into a deep learning model known as a convolutional neural network (CNN) that has already been pre-trained. The CNN classifier, which is trained with large amounts of data, can discriminate between malignant and nonmalignant melanoma. The method's success in the lab bodes well for its potential to aid dermatologists in the early detection of melanoma. However, the experimental results show that the proposed technique excels beyond the state-of-the-art methods in terms of diagnostic accuracy.\",\"PeriodicalId\":18149,\"journal\":{\"name\":\"Malaysian Journal of Fundamental and Applied Sciences\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Malaysian Journal of Fundamental and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/mjfas.v19n3.2900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Fundamental and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/mjfas.v19n3.2900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Melanoma Skin Cancer Classification based on CNN Deep Learning Algorithms
Melanoma, the deadliest form of skin cancer, is on the rise. The goal of this study is to present a deep learning system implementation for the detection of melanoma lesions on a server equipped with a graphics processing unit (GPU). When applied by a dermatologist, the recommended method might aid in the early detection of this kind of skin cancer. Evidence shows that deep learning may be used in a variety of settings to successfully extract patterns from data such as signals and images. This research presents a convolution neural network–based strategy for identifying early-stage melanoma skin cancer. Images are input into a deep learning model known as a convolutional neural network (CNN) that has already been pre-trained. The CNN classifier, which is trained with large amounts of data, can discriminate between malignant and nonmalignant melanoma. The method's success in the lab bodes well for its potential to aid dermatologists in the early detection of melanoma. However, the experimental results show that the proposed technique excels beyond the state-of-the-art methods in terms of diagnostic accuracy.