Nabla分数差分算子的一个比较结果

J. Jonnalagadda
{"title":"Nabla分数差分算子的一个比较结果","authors":"J. Jonnalagadda","doi":"10.3390/foundations3020016","DOIUrl":null,"url":null,"abstract":"This article establishes a comparison principle for the nabla fractional difference operator ∇ρ(a)ν, 1<ν<2. For this purpose, we consider a two-point nabla fractional boundary value problem with separated boundary conditions and derive the corresponding Green’s function. I prove that this Green’s function satisfies a positivity property. Then, I deduce a relatively general comparison result for the considered boundary value problem.","PeriodicalId":81291,"journal":{"name":"Foundations","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparison Result for the Nabla Fractional Difference Operator\",\"authors\":\"J. Jonnalagadda\",\"doi\":\"10.3390/foundations3020016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article establishes a comparison principle for the nabla fractional difference operator ∇ρ(a)ν, 1<ν<2. For this purpose, we consider a two-point nabla fractional boundary value problem with separated boundary conditions and derive the corresponding Green’s function. I prove that this Green’s function satisfies a positivity property. Then, I deduce a relatively general comparison result for the considered boundary value problem.\",\"PeriodicalId\":81291,\"journal\":{\"name\":\"Foundations\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/foundations3020016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/foundations3020016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

建立了nabla分数阶差分算子∇ρ(a)ν, 1<ν<2的比较原理。为此,我们考虑了具有分离边界条件的两点纳布拉分数边值问题,并导出了相应的格林函数。我证明了这个格林函数满足一个正性质。然后,对于所考虑的边值问题,我推导出一个相对一般的比较结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparison Result for the Nabla Fractional Difference Operator
This article establishes a comparison principle for the nabla fractional difference operator ∇ρ(a)ν, 1<ν<2. For this purpose, we consider a two-point nabla fractional boundary value problem with separated boundary conditions and derive the corresponding Green’s function. I prove that this Green’s function satisfies a positivity property. Then, I deduce a relatively general comparison result for the considered boundary value problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信