{"title":"Nabla分数差分算子的一个比较结果","authors":"J. Jonnalagadda","doi":"10.3390/foundations3020016","DOIUrl":null,"url":null,"abstract":"This article establishes a comparison principle for the nabla fractional difference operator ∇ρ(a)ν, 1<ν<2. For this purpose, we consider a two-point nabla fractional boundary value problem with separated boundary conditions and derive the corresponding Green’s function. I prove that this Green’s function satisfies a positivity property. Then, I deduce a relatively general comparison result for the considered boundary value problem.","PeriodicalId":81291,"journal":{"name":"Foundations","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparison Result for the Nabla Fractional Difference Operator\",\"authors\":\"J. Jonnalagadda\",\"doi\":\"10.3390/foundations3020016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article establishes a comparison principle for the nabla fractional difference operator ∇ρ(a)ν, 1<ν<2. For this purpose, we consider a two-point nabla fractional boundary value problem with separated boundary conditions and derive the corresponding Green’s function. I prove that this Green’s function satisfies a positivity property. Then, I deduce a relatively general comparison result for the considered boundary value problem.\",\"PeriodicalId\":81291,\"journal\":{\"name\":\"Foundations\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/foundations3020016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/foundations3020016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Comparison Result for the Nabla Fractional Difference Operator
This article establishes a comparison principle for the nabla fractional difference operator ∇ρ(a)ν, 1<ν<2. For this purpose, we consider a two-point nabla fractional boundary value problem with separated boundary conditions and derive the corresponding Green’s function. I prove that this Green’s function satisfies a positivity property. Then, I deduce a relatively general comparison result for the considered boundary value problem.