{"title":"保形条件对聚氨酯-形状记忆聚合物泡沫塑料形状恢复的影响","authors":"H Tobushi, R Matsui, S Hayashi, D Shimada","doi":"10.1088/0964-1726/13/4/026","DOIUrl":null,"url":null,"abstract":"The thermomechanical properties of polyurethane-shape memory polymer (SMP) foams and the influence of shape-holding conditions on shape recovery were investigated experimentally. The results obtained can be summarized as follows. (1) By cooling the foam down to below the glass transition temperature Tg after compressive deformation above Tg, stress decreases and the deformed shape is fixed. By heating the shape-fixed foam up to above Tg under no load, the original shape is recovered. (2) The shape deformed above Tg is maintained for six months under no load at Tg− 60 K without depending on the maximum strain, and the original shape is recovered by heating thereafter. (3) If the deformed shape is held at high temperature, the original shape is not recovered. (4) The ratio of shape irrecovery increases in proportion to the holding strain, holding temperature and holding time.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":"2650 1","pages":"881 - 887"},"PeriodicalIF":3.7000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of shape-holding conditions on shape recovery of polyurethane-shape memory polymer foams\",\"authors\":\"H Tobushi, R Matsui, S Hayashi, D Shimada\",\"doi\":\"10.1088/0964-1726/13/4/026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The thermomechanical properties of polyurethane-shape memory polymer (SMP) foams and the influence of shape-holding conditions on shape recovery were investigated experimentally. The results obtained can be summarized as follows. (1) By cooling the foam down to below the glass transition temperature Tg after compressive deformation above Tg, stress decreases and the deformed shape is fixed. By heating the shape-fixed foam up to above Tg under no load, the original shape is recovered. (2) The shape deformed above Tg is maintained for six months under no load at Tg− 60 K without depending on the maximum strain, and the original shape is recovered by heating thereafter. (3) If the deformed shape is held at high temperature, the original shape is not recovered. (4) The ratio of shape irrecovery increases in proportion to the holding strain, holding temperature and holding time.\",\"PeriodicalId\":21656,\"journal\":{\"name\":\"Smart Materials and Structures\",\"volume\":\"2650 1\",\"pages\":\"881 - 887\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2004-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Materials and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/0964-1726/13/4/026\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/0964-1726/13/4/026","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
The influence of shape-holding conditions on shape recovery of polyurethane-shape memory polymer foams
The thermomechanical properties of polyurethane-shape memory polymer (SMP) foams and the influence of shape-holding conditions on shape recovery were investigated experimentally. The results obtained can be summarized as follows. (1) By cooling the foam down to below the glass transition temperature Tg after compressive deformation above Tg, stress decreases and the deformed shape is fixed. By heating the shape-fixed foam up to above Tg under no load, the original shape is recovered. (2) The shape deformed above Tg is maintained for six months under no load at Tg− 60 K without depending on the maximum strain, and the original shape is recovered by heating thereafter. (3) If the deformed shape is held at high temperature, the original shape is not recovered. (4) The ratio of shape irrecovery increases in proportion to the holding strain, holding temperature and holding time.
期刊介绍:
Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures.
A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.