D. Burnett, H. Fahad, Lydia Lee, F. Maksimovic, B. Wheeler, O. Khan, A. Javey, K. Pister
{"title":"双芯片无线H2S气体传感器系统,不需要额外的电子元件","authors":"D. Burnett, H. Fahad, Lydia Lee, F. Maksimovic, B. Wheeler, O. Khan, A. Javey, K. Pister","doi":"10.1109/TRANSDUCERS.2019.8808294","DOIUrl":null,"url":null,"abstract":"We describe a wireless hydrogen sulfide (H2S) gas sensor system comprised of two integrated circuits: a chemically-sensitive field effect transistor (CS-FET) sensor and a single-chip micro-mote (SCµM). The sensor IC is a bulk transistor functionalized to respond to H2S. The SCµM IC uses an ARM Cortex M0 to digitize sensor voltage via an ADC and transmit data through a 2.4GHz FSK transmitter based on an ultra-small, crystal-free, free-running ring oscillator. The IC pair has combined volume <4mm3, requires only a power source & antenna and no additional components, and has been demonstrated to acquire signals resulting from H2S gas and wirelessly transmit results at 2.4GHz.","PeriodicalId":6672,"journal":{"name":"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)","volume":"2 1","pages":"1222-1225"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Two-Chip Wireless H2S Gas Sensor System Requiring Zero Additional Electronic Components\",\"authors\":\"D. Burnett, H. Fahad, Lydia Lee, F. Maksimovic, B. Wheeler, O. Khan, A. Javey, K. Pister\",\"doi\":\"10.1109/TRANSDUCERS.2019.8808294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a wireless hydrogen sulfide (H2S) gas sensor system comprised of two integrated circuits: a chemically-sensitive field effect transistor (CS-FET) sensor and a single-chip micro-mote (SCµM). The sensor IC is a bulk transistor functionalized to respond to H2S. The SCµM IC uses an ARM Cortex M0 to digitize sensor voltage via an ADC and transmit data through a 2.4GHz FSK transmitter based on an ultra-small, crystal-free, free-running ring oscillator. The IC pair has combined volume <4mm3, requires only a power source & antenna and no additional components, and has been demonstrated to acquire signals resulting from H2S gas and wirelessly transmit results at 2.4GHz.\",\"PeriodicalId\":6672,\"journal\":{\"name\":\"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)\",\"volume\":\"2 1\",\"pages\":\"1222-1225\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TRANSDUCERS.2019.8808294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2019.8808294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Two-Chip Wireless H2S Gas Sensor System Requiring Zero Additional Electronic Components
We describe a wireless hydrogen sulfide (H2S) gas sensor system comprised of two integrated circuits: a chemically-sensitive field effect transistor (CS-FET) sensor and a single-chip micro-mote (SCµM). The sensor IC is a bulk transistor functionalized to respond to H2S. The SCµM IC uses an ARM Cortex M0 to digitize sensor voltage via an ADC and transmit data through a 2.4GHz FSK transmitter based on an ultra-small, crystal-free, free-running ring oscillator. The IC pair has combined volume <4mm3, requires only a power source & antenna and no additional components, and has been demonstrated to acquire signals resulting from H2S gas and wirelessly transmit results at 2.4GHz.