不规则SDEs的泛函极限定理

IF 1.2 2区 数学 Q2 STATISTICS & PROBABILITY
S. Ankirchner, T. Kruse, M. Urusov
{"title":"不规则SDEs的泛函极限定理","authors":"S. Ankirchner, T. Kruse, M. Urusov","doi":"10.1214/16-AIHP760","DOIUrl":null,"url":null,"abstract":"Let $X_1, X_2, \\ldots$ be a sequence of i.i.d. real-valued random variables with mean zero, and consider the scaled random walk of the form $Y^N_{k+1} = Y^N_{k} + a_N(Y^N_k) X_{k+1}$, where $a_N: \\mathbb R \\to \\mathbb R_+$. We show, under mild assumptions on the law of $X_i$, that one can choose the scale factor $a_N$ in such a way that the process $(Y^N_{\\lfloor N t \\rfloor})_{t \\in \\mathbb R_+}$ converges in distribution to a given diffusion $(M_t)_{t \\in \\mathbb R_+}$ solving a stochastic differential equation with possibly irregular coefficients, as $N \\to \\infty$. To this end we embed the scaled random walks into the diffusion $M$ with a sequence of stopping times with expected time step $1/N$.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"9 1","pages":"1438-1457"},"PeriodicalIF":1.2000,"publicationDate":"2014-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A functional limit theorem for irregular SDEs\",\"authors\":\"S. Ankirchner, T. Kruse, M. Urusov\",\"doi\":\"10.1214/16-AIHP760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X_1, X_2, \\\\ldots$ be a sequence of i.i.d. real-valued random variables with mean zero, and consider the scaled random walk of the form $Y^N_{k+1} = Y^N_{k} + a_N(Y^N_k) X_{k+1}$, where $a_N: \\\\mathbb R \\\\to \\\\mathbb R_+$. We show, under mild assumptions on the law of $X_i$, that one can choose the scale factor $a_N$ in such a way that the process $(Y^N_{\\\\lfloor N t \\\\rfloor})_{t \\\\in \\\\mathbb R_+}$ converges in distribution to a given diffusion $(M_t)_{t \\\\in \\\\mathbb R_+}$ solving a stochastic differential equation with possibly irregular coefficients, as $N \\\\to \\\\infty$. To this end we embed the scaled random walks into the diffusion $M$ with a sequence of stopping times with expected time step $1/N$.\",\"PeriodicalId\":7902,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"volume\":\"9 1\",\"pages\":\"1438-1457\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2014-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/16-AIHP760\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/16-AIHP760","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 7

摘要

设$X_1, X_2, \ldots$为均值为零的i.i.d实值随机变量序列,并考虑形式为$Y^N_{k+1} = Y^N_{k} + a_N(Y^N_k) X_{k+1}$的缩放随机游走,其中$a_N: \mathbb R \to \mathbb R_+$。我们表明,在对$X_i$定律的温和假设下,我们可以这样选择尺度因子$a_N$,使过程$(Y^N_{\lfloor N t \rfloor})_{t \in \mathbb R_+}$在分布上收敛于给定的扩散$(M_t)_{t \in \mathbb R_+}$,求解一个可能具有不规则系数的随机微分方程,如$N \to \infty$。为此,我们将缩放的随机漫步嵌入到扩散中$M$,并具有期望时间步长$1/N$的停止时间序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A functional limit theorem for irregular SDEs
Let $X_1, X_2, \ldots$ be a sequence of i.i.d. real-valued random variables with mean zero, and consider the scaled random walk of the form $Y^N_{k+1} = Y^N_{k} + a_N(Y^N_k) X_{k+1}$, where $a_N: \mathbb R \to \mathbb R_+$. We show, under mild assumptions on the law of $X_i$, that one can choose the scale factor $a_N$ in such a way that the process $(Y^N_{\lfloor N t \rfloor})_{t \in \mathbb R_+}$ converges in distribution to a given diffusion $(M_t)_{t \in \mathbb R_+}$ solving a stochastic differential equation with possibly irregular coefficients, as $N \to \infty$. To this end we embed the scaled random walks into the diffusion $M$ with a sequence of stopping times with expected time step $1/N$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信