零和LQ随机平均场动态对策问题的增补\\(扩展版)

S. Aberkane, V. Drăgan
{"title":"零和LQ随机平均场动态对策问题的增补\\\\(扩展版)","authors":"S. Aberkane, V. Drăgan","doi":"10.48550/arXiv.2302.09609","DOIUrl":null,"url":null,"abstract":"In this paper, we first address a linear quadratic mean-field game problem with a leader-follower structure. By adopting a Riccati-type approach, we show how one can obtain a state-feedback representation of the pairs of strategies which achieve an open-loop Stackelberg equilibrium in terms of the global solutions of a system of coupled matrix differential Riccati-type equations. In the second part of this paper, we obtain necessary and sufficient conditions for the solvability of the involved coupled generalized Riccati equations.","PeriodicalId":13196,"journal":{"name":"IEEE Robotics Autom. Mag.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Addendum to the Problem of Zero-Sum LQ Stochastic Mean-Field Dynamic Games\\\\\\\\ (Extended version)\",\"authors\":\"S. Aberkane, V. Drăgan\",\"doi\":\"10.48550/arXiv.2302.09609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we first address a linear quadratic mean-field game problem with a leader-follower structure. By adopting a Riccati-type approach, we show how one can obtain a state-feedback representation of the pairs of strategies which achieve an open-loop Stackelberg equilibrium in terms of the global solutions of a system of coupled matrix differential Riccati-type equations. In the second part of this paper, we obtain necessary and sufficient conditions for the solvability of the involved coupled generalized Riccati equations.\",\"PeriodicalId\":13196,\"journal\":{\"name\":\"IEEE Robotics Autom. Mag.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics Autom. Mag.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2302.09609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics Autom. Mag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.09609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文首先讨论了一类具有领导-追随者结构的线性二次平均场博弈问题。通过采用riccti -type方法,我们展示了如何根据耦合矩阵微分riccti -type方程组的全局解获得实现开环Stackelberg平衡的策略对的状态反馈表示。在本文的第二部分,我们得到了所涉及的耦合广义Riccati方程可解的充分必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Addendum to the Problem of Zero-Sum LQ Stochastic Mean-Field Dynamic Games\\ (Extended version)
In this paper, we first address a linear quadratic mean-field game problem with a leader-follower structure. By adopting a Riccati-type approach, we show how one can obtain a state-feedback representation of the pairs of strategies which achieve an open-loop Stackelberg equilibrium in terms of the global solutions of a system of coupled matrix differential Riccati-type equations. In the second part of this paper, we obtain necessary and sufficient conditions for the solvability of the involved coupled generalized Riccati equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信