{"title":"一些相互作用最优地改进了分布非参数估计","authors":"Jingbo Liu","doi":"10.1109/TIT.2023.3309920","DOIUrl":null,"url":null,"abstract":"Consider the problem of nonparametric estimation of an unknown \n<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula>\n-Hölder smooth density \n<inline-formula> <tex-math>$p_{XY}$ </tex-math></inline-formula>\n at a given point, where \n<inline-formula> <tex-math>$X$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$Y$ </tex-math></inline-formula>\n are both \n<inline-formula> <tex-math>$d$ </tex-math></inline-formula>\n dimensional. An infinite sequence of i.i.d. samples \n<inline-formula> <tex-math>$(X_{i},Y_{i})$ </tex-math></inline-formula>\n are generated according to this distribution, and two terminals observe \n<inline-formula> <tex-math>$(X_{i})$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$(Y_{i})$ </tex-math></inline-formula>\n, respectively. They are allowed to exchange \n<inline-formula> <tex-math>$k$ </tex-math></inline-formula>\n bits either in oneway or interactively in order for Bob to estimate the unknown density. We show that the minimax mean square risk is order \n<inline-formula> <tex-math>$\\left ({\\frac {k}{\\log k} }\\right)^{-\\frac {2\\beta }{d+2\\beta }}$ </tex-math></inline-formula>\n for one-way protocols and \n<inline-formula> <tex-math>$k^{-\\frac {2\\beta }{d+2\\beta }}$ </tex-math></inline-formula>\n for interactive protocols. The logarithmic improvement is nonexistent in the parametric counterparts, and therefore can be regarded as a consequence of nonparametric nature of the problem. Moreover, a few rounds of interactions achieve the interactive minimax rate: the number of rounds can grow as slowly as the super-logarithm (i.e., inverse tetration) of \n<inline-formula> <tex-math>$k$ </tex-math></inline-formula>\n. The proof of the upper bound is based on a novel multi-round scheme for estimating the joint distribution of a pair of biased Bernoulli variables, and the lower bound is built on a sharp estimate of a symmetric strong data processing constant for biased Bernoulli variables.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"69 12","pages":"7867-7886"},"PeriodicalIF":2.2000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10234708","citationCount":"3","resultStr":"{\"title\":\"A Few Interactions Improve Distributed Nonparametric Estimation, Optimally\",\"authors\":\"Jingbo Liu\",\"doi\":\"10.1109/TIT.2023.3309920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider the problem of nonparametric estimation of an unknown \\n<inline-formula> <tex-math>$\\\\beta $ </tex-math></inline-formula>\\n-Hölder smooth density \\n<inline-formula> <tex-math>$p_{XY}$ </tex-math></inline-formula>\\n at a given point, where \\n<inline-formula> <tex-math>$X$ </tex-math></inline-formula>\\n and \\n<inline-formula> <tex-math>$Y$ </tex-math></inline-formula>\\n are both \\n<inline-formula> <tex-math>$d$ </tex-math></inline-formula>\\n dimensional. An infinite sequence of i.i.d. samples \\n<inline-formula> <tex-math>$(X_{i},Y_{i})$ </tex-math></inline-formula>\\n are generated according to this distribution, and two terminals observe \\n<inline-formula> <tex-math>$(X_{i})$ </tex-math></inline-formula>\\n and \\n<inline-formula> <tex-math>$(Y_{i})$ </tex-math></inline-formula>\\n, respectively. They are allowed to exchange \\n<inline-formula> <tex-math>$k$ </tex-math></inline-formula>\\n bits either in oneway or interactively in order for Bob to estimate the unknown density. We show that the minimax mean square risk is order \\n<inline-formula> <tex-math>$\\\\left ({\\\\frac {k}{\\\\log k} }\\\\right)^{-\\\\frac {2\\\\beta }{d+2\\\\beta }}$ </tex-math></inline-formula>\\n for one-way protocols and \\n<inline-formula> <tex-math>$k^{-\\\\frac {2\\\\beta }{d+2\\\\beta }}$ </tex-math></inline-formula>\\n for interactive protocols. The logarithmic improvement is nonexistent in the parametric counterparts, and therefore can be regarded as a consequence of nonparametric nature of the problem. Moreover, a few rounds of interactions achieve the interactive minimax rate: the number of rounds can grow as slowly as the super-logarithm (i.e., inverse tetration) of \\n<inline-formula> <tex-math>$k$ </tex-math></inline-formula>\\n. The proof of the upper bound is based on a novel multi-round scheme for estimating the joint distribution of a pair of biased Bernoulli variables, and the lower bound is built on a sharp estimate of a symmetric strong data processing constant for biased Bernoulli variables.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"69 12\",\"pages\":\"7867-7886\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10234708\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10234708/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10234708/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Few Interactions Improve Distributed Nonparametric Estimation, Optimally
Consider the problem of nonparametric estimation of an unknown
$\beta $
-Hölder smooth density
$p_{XY}$
at a given point, where
$X$
and
$Y$
are both
$d$
dimensional. An infinite sequence of i.i.d. samples
$(X_{i},Y_{i})$
are generated according to this distribution, and two terminals observe
$(X_{i})$
and
$(Y_{i})$
, respectively. They are allowed to exchange
$k$
bits either in oneway or interactively in order for Bob to estimate the unknown density. We show that the minimax mean square risk is order
$\left ({\frac {k}{\log k} }\right)^{-\frac {2\beta }{d+2\beta }}$
for one-way protocols and
$k^{-\frac {2\beta }{d+2\beta }}$
for interactive protocols. The logarithmic improvement is nonexistent in the parametric counterparts, and therefore can be regarded as a consequence of nonparametric nature of the problem. Moreover, a few rounds of interactions achieve the interactive minimax rate: the number of rounds can grow as slowly as the super-logarithm (i.e., inverse tetration) of
$k$
. The proof of the upper bound is based on a novel multi-round scheme for estimating the joint distribution of a pair of biased Bernoulli variables, and the lower bound is built on a sharp estimate of a symmetric strong data processing constant for biased Bernoulli variables.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.