电弧增材制造的传导冷却策略分析

Laurent Heinrich, T. Feldhausen, K. Saleeby, C. Saldana, T. Kurfess
{"title":"电弧增材制造的传导冷却策略分析","authors":"Laurent Heinrich, T. Feldhausen, K. Saleeby, C. Saldana, T. Kurfess","doi":"10.1115/msec2022-81641","DOIUrl":null,"url":null,"abstract":"\n Metal additive manufacturing (AM) processing consists of numerous parameters which take time to optimize for various geometries. One aspect of the metal AM process that continues to be explored is the control of thermal energy accumulation during component manufacturing due to the melting and solidification of the feedstock. Excessive energy accumulation causes thermal failure of the component while minimal energy accumulation causes lack of fusion with the build plate or previous layer. The ability to simulate the thermal response of an AM component can increase research efficiency by reducing the time to optimize thermal energy accumulation. This paper presents an effective implementation of finite element analysis to determine the thermal response of a wire arc additive manufactured component with various build plate sizes and cooling methods including, integral build plate cooling, oversized build plates with passive cooling, and non-integral build plate cooling. The use of integral build plate cooling channels was shown to decrease the interpass temperature at the conclusion of the build process by 55% and build plate temperature by 96% compared to the conventionally deposited sample with 20 second dwell time. The use of a tall build plate with passive cooling was shown to reduce the interpass temperature by 32% as compared to the conventionally deposited sample with 20 second dwell time. Each cooling strategy evaluated decreased the interpass temperature within a range of 20–55% which enables higher deposition rates and decreased dwell times during depositions. The cooling strategies are designed to be implemented in a hybrid or retrofit AM platform to mitigate concerns of the thermal input from the additive process having detrimental effects on the precision of the machining process. This paper shows that accurate simulations of all strategies can be used to accurately predict the thermal response of the various strategies discussed. These cooling strategies will allow for increased deposition rates with comparable interpass temperature and decreased dwell time, increasing deposition efficiency. This model and these simulations are verified by experimental results. It is concluded that passive strategies, such as the over-sized tall build plate, can be used when liquid coolant in the AM environment could negatively affect the deposition process. Active cooling strategies, such as the integral build plate cooling could be used if low thermal conductivity materials are deposited or higher material deposition rates are desired. This paper discusses the use of active and passive cooling used during AM and shows how a simulation model can be used to make design choices for cooling strategies. The model also enables verification of select critical process parameters such as dwell times for a desired interpass temperature.","PeriodicalId":23676,"journal":{"name":"Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Conduction Cooling Strategies for Wire Arc Additive Manufacturing\",\"authors\":\"Laurent Heinrich, T. Feldhausen, K. Saleeby, C. Saldana, T. Kurfess\",\"doi\":\"10.1115/msec2022-81641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Metal additive manufacturing (AM) processing consists of numerous parameters which take time to optimize for various geometries. One aspect of the metal AM process that continues to be explored is the control of thermal energy accumulation during component manufacturing due to the melting and solidification of the feedstock. Excessive energy accumulation causes thermal failure of the component while minimal energy accumulation causes lack of fusion with the build plate or previous layer. The ability to simulate the thermal response of an AM component can increase research efficiency by reducing the time to optimize thermal energy accumulation. This paper presents an effective implementation of finite element analysis to determine the thermal response of a wire arc additive manufactured component with various build plate sizes and cooling methods including, integral build plate cooling, oversized build plates with passive cooling, and non-integral build plate cooling. The use of integral build plate cooling channels was shown to decrease the interpass temperature at the conclusion of the build process by 55% and build plate temperature by 96% compared to the conventionally deposited sample with 20 second dwell time. The use of a tall build plate with passive cooling was shown to reduce the interpass temperature by 32% as compared to the conventionally deposited sample with 20 second dwell time. Each cooling strategy evaluated decreased the interpass temperature within a range of 20–55% which enables higher deposition rates and decreased dwell times during depositions. The cooling strategies are designed to be implemented in a hybrid or retrofit AM platform to mitigate concerns of the thermal input from the additive process having detrimental effects on the precision of the machining process. This paper shows that accurate simulations of all strategies can be used to accurately predict the thermal response of the various strategies discussed. These cooling strategies will allow for increased deposition rates with comparable interpass temperature and decreased dwell time, increasing deposition efficiency. This model and these simulations are verified by experimental results. It is concluded that passive strategies, such as the over-sized tall build plate, can be used when liquid coolant in the AM environment could negatively affect the deposition process. Active cooling strategies, such as the integral build plate cooling could be used if low thermal conductivity materials are deposited or higher material deposition rates are desired. This paper discusses the use of active and passive cooling used during AM and shows how a simulation model can be used to make design choices for cooling strategies. The model also enables verification of select critical process parameters such as dwell times for a desired interpass temperature.\",\"PeriodicalId\":23676,\"journal\":{\"name\":\"Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/msec2022-81641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/msec2022-81641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

金属增材制造(AM)加工包括许多参数,需要时间来优化各种几何形状。金属增材制造工艺的一个继续探索的方面是由于原料的熔化和凝固而导致的组件制造过程中热能积累的控制。过多的能量积累导致组件的热失效,而最小的能量积累导致与构建板或前一层缺乏融合。模拟AM组件热响应的能力可以通过减少优化热能积累的时间来提高研究效率。本文提出了一种有效的有限元分析方法,以确定具有各种构建板尺寸和冷却方法的线弧增材制造部件的热响应,包括整体构建板冷却、超大构建板被动冷却和非整体构建板冷却。与停留时间为20秒的传统沉积样品相比,使用整体构建板冷却通道可将构建过程结束时的通道间温度降低55%,构建板温度降低96%。与传统沉积样品的20秒停留时间相比,使用带有被动冷却的高构建板可将通道间温度降低32%。所评估的每种冷却策略都将通道温度降低了20-55%,从而提高了沉积速率,减少了沉积过程中的停留时间。冷却策略旨在在混合或改进型增材制造平台中实施,以减轻增材加工过程中产生的热输入对加工过程精度的不利影响。本文表明,所有策略的精确模拟可以准确地预测所讨论的各种策略的热响应。这些冷却策略将允许在相当的通道温度下增加沉积速率,减少停留时间,提高沉积效率。实验结果验证了该模型和仿真结果。结论是,当增材制造环境中的液体冷却剂可能对沉积过程产生负面影响时,可以采用被动策略,例如超大尺寸的高构建板。主动冷却策略,如整体构建板冷却可以使用,如果低导热材料沉积或更高的材料沉积速率是理想的。本文讨论了在增材制造过程中使用的主动和被动冷却,并展示了如何使用仿真模型来选择冷却策略。该模型还可以验证选定的关键工艺参数,如所需的通道间温度的停留时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Conduction Cooling Strategies for Wire Arc Additive Manufacturing
Metal additive manufacturing (AM) processing consists of numerous parameters which take time to optimize for various geometries. One aspect of the metal AM process that continues to be explored is the control of thermal energy accumulation during component manufacturing due to the melting and solidification of the feedstock. Excessive energy accumulation causes thermal failure of the component while minimal energy accumulation causes lack of fusion with the build plate or previous layer. The ability to simulate the thermal response of an AM component can increase research efficiency by reducing the time to optimize thermal energy accumulation. This paper presents an effective implementation of finite element analysis to determine the thermal response of a wire arc additive manufactured component with various build plate sizes and cooling methods including, integral build plate cooling, oversized build plates with passive cooling, and non-integral build plate cooling. The use of integral build plate cooling channels was shown to decrease the interpass temperature at the conclusion of the build process by 55% and build plate temperature by 96% compared to the conventionally deposited sample with 20 second dwell time. The use of a tall build plate with passive cooling was shown to reduce the interpass temperature by 32% as compared to the conventionally deposited sample with 20 second dwell time. Each cooling strategy evaluated decreased the interpass temperature within a range of 20–55% which enables higher deposition rates and decreased dwell times during depositions. The cooling strategies are designed to be implemented in a hybrid or retrofit AM platform to mitigate concerns of the thermal input from the additive process having detrimental effects on the precision of the machining process. This paper shows that accurate simulations of all strategies can be used to accurately predict the thermal response of the various strategies discussed. These cooling strategies will allow for increased deposition rates with comparable interpass temperature and decreased dwell time, increasing deposition efficiency. This model and these simulations are verified by experimental results. It is concluded that passive strategies, such as the over-sized tall build plate, can be used when liquid coolant in the AM environment could negatively affect the deposition process. Active cooling strategies, such as the integral build plate cooling could be used if low thermal conductivity materials are deposited or higher material deposition rates are desired. This paper discusses the use of active and passive cooling used during AM and shows how a simulation model can be used to make design choices for cooling strategies. The model also enables verification of select critical process parameters such as dwell times for a desired interpass temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信