基于受限和无限制参数空间的分层Poisson-Gamma模型的E-Bayesian估计

Azeem Iqbal, Laila A. Al-Essa, Muhammad Yousaf Shad, Fuad S. Al-Duais, M. Yassen, Muhammad Ahmad Raza
{"title":"基于受限和无限制参数空间的分层Poisson-Gamma模型的E-Bayesian估计","authors":"Azeem Iqbal, Laila A. Al-Essa, Muhammad Yousaf Shad, Fuad S. Al-Duais, M. Yassen, Muhammad Ahmad Raza","doi":"10.1155/2023/8767200","DOIUrl":null,"url":null,"abstract":"In this study, we use the idea of the hierarchical model (HM) to estimate an unknown parameter of the hierarchical Poisson-Gamma model using the E-Bayesian (E-B) theory. We propose the idea of hierarchical probability function instead of the traditional hierarchical prior density function. We aim to infer E-B estimates with respect to the conjugate Gamma prior distribution along with the E-posterior risks on the basis of different symmetric and asymmetric loss functions (LFs) under restricted and unrestricted parameter spaces using uniform hyperprior. Whereas, E-B estimators are compared with maximum likelihood estimators (MLEs) using mean squared error (MSE). Monte Carlo simulations are prosecuted to study the efficiency of E-B estimators empirically. It is shown that the LFs under a restricted parameter space dominate to estimate the parameter of the hierarchical Poisson-Gamma model. It is also found that the E-B estimators are more precise than MLEs, and Stein’s LF has the least E-PR. Moreover, the application of outcomes to a real-life example has been made for analysis, comparison, and motivation.","PeriodicalId":72654,"journal":{"name":"Complex psychiatry","volume":"4 1","pages":"8767200:1-8767200:19"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"E-Bayesian Estimation of Hierarchical Poisson-Gamma Model on the Basis of Restricted and Unrestricted Parameter Spaces\",\"authors\":\"Azeem Iqbal, Laila A. Al-Essa, Muhammad Yousaf Shad, Fuad S. Al-Duais, M. Yassen, Muhammad Ahmad Raza\",\"doi\":\"10.1155/2023/8767200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we use the idea of the hierarchical model (HM) to estimate an unknown parameter of the hierarchical Poisson-Gamma model using the E-Bayesian (E-B) theory. We propose the idea of hierarchical probability function instead of the traditional hierarchical prior density function. We aim to infer E-B estimates with respect to the conjugate Gamma prior distribution along with the E-posterior risks on the basis of different symmetric and asymmetric loss functions (LFs) under restricted and unrestricted parameter spaces using uniform hyperprior. Whereas, E-B estimators are compared with maximum likelihood estimators (MLEs) using mean squared error (MSE). Monte Carlo simulations are prosecuted to study the efficiency of E-B estimators empirically. It is shown that the LFs under a restricted parameter space dominate to estimate the parameter of the hierarchical Poisson-Gamma model. It is also found that the E-B estimators are more precise than MLEs, and Stein’s LF has the least E-PR. Moreover, the application of outcomes to a real-life example has been made for analysis, comparison, and motivation.\",\"PeriodicalId\":72654,\"journal\":{\"name\":\"Complex psychiatry\",\"volume\":\"4 1\",\"pages\":\"8767200:1-8767200:19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex psychiatry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/8767200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex psychiatry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/8767200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们使用层次模型(HM)的思想,利用e -贝叶斯(E-B)理论估计层次泊松-伽马模型的未知参数。我们提出了层次概率函数的思想来代替传统的层次先验密度函数。我们的目的是利用均匀超先验,在受限和无限制参数空间下,基于不同的对称和非对称损失函数(LFs),推断关于共轭Gamma先验分布的E-B估计以及e -后验风险。然而,使用均方误差(MSE)将E-B估计量与最大似然估计量(MLEs)进行比较。通过蒙特卡罗模拟,对E-B估计器的有效性进行了实证研究。结果表明,在有限的参数空间下,LFs对分层泊松-伽玛模型的参数估计起主导作用。我们还发现E-B估计器比mle估计器更精确,Stein的LF估计器的E-PR最小。此外,将结果应用于现实生活中的例子,进行分析、比较和激励。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
E-Bayesian Estimation of Hierarchical Poisson-Gamma Model on the Basis of Restricted and Unrestricted Parameter Spaces
In this study, we use the idea of the hierarchical model (HM) to estimate an unknown parameter of the hierarchical Poisson-Gamma model using the E-Bayesian (E-B) theory. We propose the idea of hierarchical probability function instead of the traditional hierarchical prior density function. We aim to infer E-B estimates with respect to the conjugate Gamma prior distribution along with the E-posterior risks on the basis of different symmetric and asymmetric loss functions (LFs) under restricted and unrestricted parameter spaces using uniform hyperprior. Whereas, E-B estimators are compared with maximum likelihood estimators (MLEs) using mean squared error (MSE). Monte Carlo simulations are prosecuted to study the efficiency of E-B estimators empirically. It is shown that the LFs under a restricted parameter space dominate to estimate the parameter of the hierarchical Poisson-Gamma model. It is also found that the E-B estimators are more precise than MLEs, and Stein’s LF has the least E-PR. Moreover, the application of outcomes to a real-life example has been made for analysis, comparison, and motivation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信