聚类学生解决方案的特征工程

Elena L. Glassman, Rishabh Singh, Rob Miller
{"title":"聚类学生解决方案的特征工程","authors":"Elena L. Glassman, Rishabh Singh, Rob Miller","doi":"10.1145/2556325.2567865","DOIUrl":null,"url":null,"abstract":"Open-ended homework problems such as coding assignments give students a broad range of freedom for the design of solutions. We aim to use the diversity in correct solutions to enhance student learning by automatically suggesting alternate solutions. Our approach is to perform a two-level hierarchical clustering of student solutions to first partition them based on the choice of algorithm and then partition solutions implementing the same algorithm based on low-level implementation details. Our initial investigations in domains of introductory programming and computer architecture demonstrate that we need two different classes of features to perform effective clustering at the two levels, namely abstract features and concrete features.","PeriodicalId":20830,"journal":{"name":"Proceedings of the first ACM conference on Learning @ scale conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Feature engineering for clustering student solutions\",\"authors\":\"Elena L. Glassman, Rishabh Singh, Rob Miller\",\"doi\":\"10.1145/2556325.2567865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Open-ended homework problems such as coding assignments give students a broad range of freedom for the design of solutions. We aim to use the diversity in correct solutions to enhance student learning by automatically suggesting alternate solutions. Our approach is to perform a two-level hierarchical clustering of student solutions to first partition them based on the choice of algorithm and then partition solutions implementing the same algorithm based on low-level implementation details. Our initial investigations in domains of introductory programming and computer architecture demonstrate that we need two different classes of features to perform effective clustering at the two levels, namely abstract features and concrete features.\",\"PeriodicalId\":20830,\"journal\":{\"name\":\"Proceedings of the first ACM conference on Learning @ scale conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the first ACM conference on Learning @ scale conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2556325.2567865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the first ACM conference on Learning @ scale conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2556325.2567865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

开放式的家庭作业问题,如编码作业,给学生广泛的自由设计解决方案。我们的目标是利用正确解决方案的多样性,通过自动提出替代解决方案来增强学生的学习。我们的方法是对学生解决方案执行两级分层聚类,首先根据算法的选择对它们进行分区,然后根据低级实现细节对实现相同算法的解决方案进行分区。我们在入门编程和计算机体系结构领域的初步研究表明,我们需要两类不同的特征来在两个层次上执行有效的聚类,即抽象特征和具体特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature engineering for clustering student solutions
Open-ended homework problems such as coding assignments give students a broad range of freedom for the design of solutions. We aim to use the diversity in correct solutions to enhance student learning by automatically suggesting alternate solutions. Our approach is to perform a two-level hierarchical clustering of student solutions to first partition them based on the choice of algorithm and then partition solutions implementing the same algorithm based on low-level implementation details. Our initial investigations in domains of introductory programming and computer architecture demonstrate that we need two different classes of features to perform effective clustering at the two levels, namely abstract features and concrete features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信