液体真皮支架内脂肪微碎片治疗全层创面的评价

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sara Sheikh-Oleslami, I. Hassanpour, N. Amiri, R. Jalili, R. Kilani, A. Ghahary
{"title":"液体真皮支架内脂肪微碎片治疗全层创面的评价","authors":"Sara Sheikh-Oleslami, I. Hassanpour, N. Amiri, R. Jalili, R. Kilani, A. Ghahary","doi":"10.3390/ebj3030040","DOIUrl":null,"url":null,"abstract":"In full-thickness wounds, inflammation, lack of matrix deposition, and paucity of progenitor cells delay healing. As commercially available solid (sheet) scaffolds are unable to conform to wounds of varying shapes and sizes, we previously generated a nutritious, injectable, liquid skin substitute that can conform to wound topography. In combination with adipose micro-fragments as a viable source of progenitor cells, a composite, in situ forming skin substitute was tested for the treatment of silicon ring splinted full-thickness wounds in rats. The in vitro survivability and migratory capacity of adipocytes derived from rat micro-fragmented fat cultured in our scaffold was examined with a Live/Dead assay, showing viability and migration after 7 and 14 days. In vivo, the efficacy of our scaffold alone (LDS) or with adipose micro-fragments (LDS+A) was compared to a standard dressing protocol (NT). LDS and LDS+A showed ameliorated wound healing, including complete epithelialization and less immune cell infiltration, compared to the NT control. Our findings demonstrate that a 3D liquid skin scaffold is a rich environment for adipocyte viability and migration, and that the addition of adipose micro-fragments to this scaffold can be used as a rich source of cells for treating full-thickness wounds.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Evaluation of the Treatment of Full-Thickness Wounds Using Adipose Micro-Fragments within a Liquid Dermal Scaffold\",\"authors\":\"Sara Sheikh-Oleslami, I. Hassanpour, N. Amiri, R. Jalili, R. Kilani, A. Ghahary\",\"doi\":\"10.3390/ebj3030040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In full-thickness wounds, inflammation, lack of matrix deposition, and paucity of progenitor cells delay healing. As commercially available solid (sheet) scaffolds are unable to conform to wounds of varying shapes and sizes, we previously generated a nutritious, injectable, liquid skin substitute that can conform to wound topography. In combination with adipose micro-fragments as a viable source of progenitor cells, a composite, in situ forming skin substitute was tested for the treatment of silicon ring splinted full-thickness wounds in rats. The in vitro survivability and migratory capacity of adipocytes derived from rat micro-fragmented fat cultured in our scaffold was examined with a Live/Dead assay, showing viability and migration after 7 and 14 days. In vivo, the efficacy of our scaffold alone (LDS) or with adipose micro-fragments (LDS+A) was compared to a standard dressing protocol (NT). LDS and LDS+A showed ameliorated wound healing, including complete epithelialization and less immune cell infiltration, compared to the NT control. Our findings demonstrate that a 3D liquid skin scaffold is a rich environment for adipocyte viability and migration, and that the addition of adipose micro-fragments to this scaffold can be used as a rich source of cells for treating full-thickness wounds.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ebj3030040\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ebj3030040","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在全层伤口中,炎症、基质沉积的缺乏和祖细胞的缺乏会延迟愈合。由于市面上可用的固体(片状)支架无法适应不同形状和大小的伤口,我们之前制作了一种营养丰富、可注射的液体皮肤替代品,可以适应伤口的地形。结合脂肪微碎片作为可行的祖细胞来源,我们测试了一种复合的原位形成皮肤替代物用于大鼠硅环夹板全层伤口的治疗。我们的支架中培养的来自大鼠微碎片脂肪的脂肪细胞的体外生存能力和迁移能力通过活/死实验进行了检测,显示了7天和14天后的生存能力和迁移能力。在体内,我们的支架单独(LDS)或与脂肪微碎片(LDS+A)的效果与标准敷料方案(NT)进行了比较。与NT对照组相比,LDS和LDS+A组伤口愈合改善,包括完全上皮化和较少的免疫细胞浸润。我们的研究结果表明,3D液体皮肤支架是脂肪细胞活力和迁移的丰富环境,并且在支架中添加脂肪微碎片可以作为治疗全层伤口的丰富细胞来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Evaluation of the Treatment of Full-Thickness Wounds Using Adipose Micro-Fragments within a Liquid Dermal Scaffold
In full-thickness wounds, inflammation, lack of matrix deposition, and paucity of progenitor cells delay healing. As commercially available solid (sheet) scaffolds are unable to conform to wounds of varying shapes and sizes, we previously generated a nutritious, injectable, liquid skin substitute that can conform to wound topography. In combination with adipose micro-fragments as a viable source of progenitor cells, a composite, in situ forming skin substitute was tested for the treatment of silicon ring splinted full-thickness wounds in rats. The in vitro survivability and migratory capacity of adipocytes derived from rat micro-fragmented fat cultured in our scaffold was examined with a Live/Dead assay, showing viability and migration after 7 and 14 days. In vivo, the efficacy of our scaffold alone (LDS) or with adipose micro-fragments (LDS+A) was compared to a standard dressing protocol (NT). LDS and LDS+A showed ameliorated wound healing, including complete epithelialization and less immune cell infiltration, compared to the NT control. Our findings demonstrate that a 3D liquid skin scaffold is a rich environment for adipocyte viability and migration, and that the addition of adipose micro-fragments to this scaffold can be used as a rich source of cells for treating full-thickness wounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信