Annan Chen, Jin Su, Yinjin Li, Haibo Zhang, Yusheng Shi, C. Yan, Jian Lu
{"title":"3D/4D打印生物压电智能支架用于下一代骨组织工程","authors":"Annan Chen, Jin Su, Yinjin Li, Haibo Zhang, Yusheng Shi, C. Yan, Jian Lu","doi":"10.1088/2631-7990/acd88f","DOIUrl":null,"url":null,"abstract":"Piezoelectricity in native bones has been well recognized as the key factor in bone regeneration. Thus, bio-piezoelectric materials have gained substantial attention in repairing damaged bone by mimicking the tissue’s electrical microenvironment (EM). However, traditional manufacturing strategies still encounter limitations in creating personalized bio-piezoelectric scaffolds, hindering their clinical applications. Three-dimensional (3D)/four-dimensional (4D) printing technology based on the principle of layer-by-layer forming and stacking of discrete materials has demonstrated outstanding advantages in fabricating bio-piezoelectric scaffolds in a more complex-shaped structure. Notably, 4D printing functionality-shifting bio-piezoelectric scaffolds can provide a time-dependent programmable tissue EM in response to external stimuli for bone regeneration. In this review, we first summarize the physicochemical properties of commonly used bio-piezoelectric materials (including polymers, ceramics, and their composites) and representative biological findings for bone regeneration. Then, we discuss the latest research advances in the 3D printing of bio-piezoelectric scaffolds in terms of feedstock selection, printing process, induction strategies, and potential applications. Besides, some related challenges such as feedstock scalability, printing resolution, stress-to-polarization conversion efficiency, and non-invasive induction ability after implantation have been put forward. Finally, we highlight the potential of shape/property/functionality-shifting smart 4D bio-piezoelectric scaffolds in bone tissue engineering (BTE). Taken together, this review emphasizes the appealing utility of 3D/4D printed biological piezoelectric scaffolds as next-generation BTE implants.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":"79 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"3D/4D printed bio-piezoelectric smart scaffolds for next-generation bone tissue engineering\",\"authors\":\"Annan Chen, Jin Su, Yinjin Li, Haibo Zhang, Yusheng Shi, C. Yan, Jian Lu\",\"doi\":\"10.1088/2631-7990/acd88f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Piezoelectricity in native bones has been well recognized as the key factor in bone regeneration. Thus, bio-piezoelectric materials have gained substantial attention in repairing damaged bone by mimicking the tissue’s electrical microenvironment (EM). However, traditional manufacturing strategies still encounter limitations in creating personalized bio-piezoelectric scaffolds, hindering their clinical applications. Three-dimensional (3D)/four-dimensional (4D) printing technology based on the principle of layer-by-layer forming and stacking of discrete materials has demonstrated outstanding advantages in fabricating bio-piezoelectric scaffolds in a more complex-shaped structure. Notably, 4D printing functionality-shifting bio-piezoelectric scaffolds can provide a time-dependent programmable tissue EM in response to external stimuli for bone regeneration. In this review, we first summarize the physicochemical properties of commonly used bio-piezoelectric materials (including polymers, ceramics, and their composites) and representative biological findings for bone regeneration. Then, we discuss the latest research advances in the 3D printing of bio-piezoelectric scaffolds in terms of feedstock selection, printing process, induction strategies, and potential applications. Besides, some related challenges such as feedstock scalability, printing resolution, stress-to-polarization conversion efficiency, and non-invasive induction ability after implantation have been put forward. Finally, we highlight the potential of shape/property/functionality-shifting smart 4D bio-piezoelectric scaffolds in bone tissue engineering (BTE). Taken together, this review emphasizes the appealing utility of 3D/4D printed biological piezoelectric scaffolds as next-generation BTE implants.\",\"PeriodicalId\":52353,\"journal\":{\"name\":\"International Journal of Extreme Manufacturing\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2023-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Extreme Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/2631-7990/acd88f\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/acd88f","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
3D/4D printed bio-piezoelectric smart scaffolds for next-generation bone tissue engineering
Piezoelectricity in native bones has been well recognized as the key factor in bone regeneration. Thus, bio-piezoelectric materials have gained substantial attention in repairing damaged bone by mimicking the tissue’s electrical microenvironment (EM). However, traditional manufacturing strategies still encounter limitations in creating personalized bio-piezoelectric scaffolds, hindering their clinical applications. Three-dimensional (3D)/four-dimensional (4D) printing technology based on the principle of layer-by-layer forming and stacking of discrete materials has demonstrated outstanding advantages in fabricating bio-piezoelectric scaffolds in a more complex-shaped structure. Notably, 4D printing functionality-shifting bio-piezoelectric scaffolds can provide a time-dependent programmable tissue EM in response to external stimuli for bone regeneration. In this review, we first summarize the physicochemical properties of commonly used bio-piezoelectric materials (including polymers, ceramics, and their composites) and representative biological findings for bone regeneration. Then, we discuss the latest research advances in the 3D printing of bio-piezoelectric scaffolds in terms of feedstock selection, printing process, induction strategies, and potential applications. Besides, some related challenges such as feedstock scalability, printing resolution, stress-to-polarization conversion efficiency, and non-invasive induction ability after implantation have been put forward. Finally, we highlight the potential of shape/property/functionality-shifting smart 4D bio-piezoelectric scaffolds in bone tissue engineering (BTE). Taken together, this review emphasizes the appealing utility of 3D/4D printed biological piezoelectric scaffolds as next-generation BTE implants.
期刊介绍:
The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.