零温度极限下分离构型中ABC模型的演化

IF 1.2 2区 数学 Q2 STATISTICS & PROBABILITY
R. Misturini
{"title":"零温度极限下分离构型中ABC模型的演化","authors":"R. Misturini","doi":"10.1214/14-AIHP648","DOIUrl":null,"url":null,"abstract":"We consider the ABC model on a ring in a strongly asymmetric regime. The main result asserts that the particles almost always form three pure domains (one of each species) and that this segregated shape evolves, in a proper time scale, as a Brownian motion on the circle, which may have a drift. This is, to our knowledge, the first proof of a zero-temperature limit for a non-reversible dynamics whose invariant measure is not explicitly known.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"127 1","pages":"669-702"},"PeriodicalIF":1.2000,"publicationDate":"2014-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Evolution of the ABC model among the segregated configurations in the zero-temperature limit\",\"authors\":\"R. Misturini\",\"doi\":\"10.1214/14-AIHP648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the ABC model on a ring in a strongly asymmetric regime. The main result asserts that the particles almost always form three pure domains (one of each species) and that this segregated shape evolves, in a proper time scale, as a Brownian motion on the circle, which may have a drift. This is, to our knowledge, the first proof of a zero-temperature limit for a non-reversible dynamics whose invariant measure is not explicitly known.\",\"PeriodicalId\":7902,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"volume\":\"127 1\",\"pages\":\"669-702\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2014-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/14-AIHP648\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/14-AIHP648","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 10

摘要

我们考虑了环在强不对称状态下的ABC模型。主要结果断言,粒子几乎总是形成三个纯域(每种一个),并且这种分离的形状在适当的时间尺度上演变为圆周上的布朗运动,可能有漂移。据我们所知,这是对不可逆动力学的零温度极限的第一个证明,它的不变测度是未知的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolution of the ABC model among the segregated configurations in the zero-temperature limit
We consider the ABC model on a ring in a strongly asymmetric regime. The main result asserts that the particles almost always form three pure domains (one of each species) and that this segregated shape evolves, in a proper time scale, as a Brownian motion on the circle, which may have a drift. This is, to our knowledge, the first proof of a zero-temperature limit for a non-reversible dynamics whose invariant measure is not explicitly known.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信