{"title":"步行和马拉松运动中人体皮肤部位代谢对体温调节影响的二维有限元方法","authors":"D. Shrestha, S. Acharya, D. B. Gurung","doi":"10.1155/2023/5728385","DOIUrl":null,"url":null,"abstract":"The physiological mechanisms conduction, convection, and radiation exchange the heat energy in bi-directional routes between the body and the temperature field. Metabolism and evaporation are the uni-directional routes for the exchange of heat energy. In the metabolic process, the body creates internal heat energy, whereas the body loses excess heat energy through the evaporation process and maintains the body temperature. This study has shown steady and unsteady state temperature distribution in three skin layers: epidermis, dermis, and subcutaneous tissue, during walking and marathon. The results have analyzed that each skin layer temperature is higher during a marathon compared with walking due to more metabolic effects. The computation has been carried out for the two-dimensional Pennes’ bio-heat equation using a finite element approach. The generated results have been exhibited graphically.","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":"28 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-Dimensional FEM Approach of Metabolic Effect on Thermoregulation in Human Dermal Parts During Walking and Marathon\",\"authors\":\"D. Shrestha, S. Acharya, D. B. Gurung\",\"doi\":\"10.1155/2023/5728385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The physiological mechanisms conduction, convection, and radiation exchange the heat energy in bi-directional routes between the body and the temperature field. Metabolism and evaporation are the uni-directional routes for the exchange of heat energy. In the metabolic process, the body creates internal heat energy, whereas the body loses excess heat energy through the evaporation process and maintains the body temperature. This study has shown steady and unsteady state temperature distribution in three skin layers: epidermis, dermis, and subcutaneous tissue, during walking and marathon. The results have analyzed that each skin layer temperature is higher during a marathon compared with walking due to more metabolic effects. The computation has been carried out for the two-dimensional Pennes’ bio-heat equation using a finite element approach. The generated results have been exhibited graphically.\",\"PeriodicalId\":45541,\"journal\":{\"name\":\"Modelling and Simulation in Engineering\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/5728385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/5728385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Two-Dimensional FEM Approach of Metabolic Effect on Thermoregulation in Human Dermal Parts During Walking and Marathon
The physiological mechanisms conduction, convection, and radiation exchange the heat energy in bi-directional routes between the body and the temperature field. Metabolism and evaporation are the uni-directional routes for the exchange of heat energy. In the metabolic process, the body creates internal heat energy, whereas the body loses excess heat energy through the evaporation process and maintains the body temperature. This study has shown steady and unsteady state temperature distribution in three skin layers: epidermis, dermis, and subcutaneous tissue, during walking and marathon. The results have analyzed that each skin layer temperature is higher during a marathon compared with walking due to more metabolic effects. The computation has been carried out for the two-dimensional Pennes’ bio-heat equation using a finite element approach. The generated results have been exhibited graphically.
期刊介绍:
Modelling and Simulation in Engineering aims at providing a forum for the discussion of formalisms, methodologies and simulation tools that are intended to support the new, broader interpretation of Engineering. Competitive pressures of Global Economy have had a profound effect on the manufacturing in Europe, Japan and the USA with much of the production being outsourced. In this context the traditional interpretation of engineering profession linked to the actual manufacturing needs to be broadened to include the integration of outsourced components and the consideration of logistic, economical and human factors in the design of engineering products and services.