基于机器学习和Vader Lexicon方法的Covid-19疫苗推文情绪分析

IF 1.7 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Vishakha Arya, A. Mishra, Alfonso González-Briones
{"title":"基于机器学习和Vader Lexicon方法的Covid-19疫苗推文情绪分析","authors":"Vishakha Arya, A. Mishra, Alfonso González-Briones","doi":"10.14201/adcaij.27349","DOIUrl":null,"url":null,"abstract":"The novel Coronavirus disease of 2019 (COVID-19) has subsequently named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) have tormented the lives of millions of people worldwide. Effective and safe vaccination might curtail the pandemic. This study aims to apply the VADER lexicon, TextBlob and machine learning approach: to analyze and detect the ongoing sentiments during the affliction of the Covid-19 pandemic on Twitter, to understand public reaction worldwide towards vaccine and concerns about the effectiveness of the vaccine. Over 200000 tweets vaccine-related using hashtags #CovidVaccine #Vaccines #CornavirusVaccine were retrieved from 18 August 2020 to 20 July 2021. Data analysis conducted by VADER lexicon method to predict sentiments polarity, counts and sentiment distribution, TextBlob to determine the subjectivity and polarity, and also compared with two other models such as Random Forest (RF) and Logistic Regression (LR). The results determine sentiments that public have a positive stance towards a vaccine follows by neutral and negative. Machine learning classification models performed better than the VADER lexicon method on vaccine Tweets. It is anticipated this study aims to help the government in long run, to make policies and a better environment for people suffering from negative thoughts during the ongoing pandemic.","PeriodicalId":42597,"journal":{"name":"ADCAIJ-Advances in Distributed Computing and Artificial Intelligence Journal","volume":"28 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sentiments Analysis of Covid-19 Vaccine Tweets Using Machine Learning and Vader Lexicon Method\",\"authors\":\"Vishakha Arya, A. Mishra, Alfonso González-Briones\",\"doi\":\"10.14201/adcaij.27349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The novel Coronavirus disease of 2019 (COVID-19) has subsequently named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) have tormented the lives of millions of people worldwide. Effective and safe vaccination might curtail the pandemic. This study aims to apply the VADER lexicon, TextBlob and machine learning approach: to analyze and detect the ongoing sentiments during the affliction of the Covid-19 pandemic on Twitter, to understand public reaction worldwide towards vaccine and concerns about the effectiveness of the vaccine. Over 200000 tweets vaccine-related using hashtags #CovidVaccine #Vaccines #CornavirusVaccine were retrieved from 18 August 2020 to 20 July 2021. Data analysis conducted by VADER lexicon method to predict sentiments polarity, counts and sentiment distribution, TextBlob to determine the subjectivity and polarity, and also compared with two other models such as Random Forest (RF) and Logistic Regression (LR). The results determine sentiments that public have a positive stance towards a vaccine follows by neutral and negative. Machine learning classification models performed better than the VADER lexicon method on vaccine Tweets. It is anticipated this study aims to help the government in long run, to make policies and a better environment for people suffering from negative thoughts during the ongoing pandemic.\",\"PeriodicalId\":42597,\"journal\":{\"name\":\"ADCAIJ-Advances in Distributed Computing and Artificial Intelligence Journal\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ADCAIJ-Advances in Distributed Computing and Artificial Intelligence Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14201/adcaij.27349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ADCAIJ-Advances in Distributed Computing and Artificial Intelligence Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14201/adcaij.27349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

2019年新型冠状病毒病(COVID-19)随后被命名为严重急性呼吸系统综合征冠状病毒2 (SARS-CoV-2),折磨着全世界数百万人的生活。有效和安全的疫苗接种可能会遏制大流行。本研究旨在应用VADER词典、TextBlob和机器学习方法:分析和检测在2019冠状病毒病大流行期间Twitter上的持续情绪,了解全球公众对疫苗的反应以及对疫苗有效性的担忧。从2020年8月18日至2021年7月20日,使用# covid - vaccine #Vaccines #冠状病毒疫苗标签检索了20多万条与疫苗相关的推文。数据分析采用VADER词典法预测情感极性、计数和情感分布,TextBlob法确定主观性和极性,并与随机森林(Random Forest, RF)和Logistic回归(Logistic Regression, LR)等两种模型进行比较。结果决定了公众对疫苗的态度是积极的,其次是中立和消极的。机器学习分类模型在疫苗推文上的表现优于VADER词典方法。预计这项研究的目的是帮助政府制定长期政策,并为正在遭受负面思想的人们提供更好的环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sentiments Analysis of Covid-19 Vaccine Tweets Using Machine Learning and Vader Lexicon Method
The novel Coronavirus disease of 2019 (COVID-19) has subsequently named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) have tormented the lives of millions of people worldwide. Effective and safe vaccination might curtail the pandemic. This study aims to apply the VADER lexicon, TextBlob and machine learning approach: to analyze and detect the ongoing sentiments during the affliction of the Covid-19 pandemic on Twitter, to understand public reaction worldwide towards vaccine and concerns about the effectiveness of the vaccine. Over 200000 tweets vaccine-related using hashtags #CovidVaccine #Vaccines #CornavirusVaccine were retrieved from 18 August 2020 to 20 July 2021. Data analysis conducted by VADER lexicon method to predict sentiments polarity, counts and sentiment distribution, TextBlob to determine the subjectivity and polarity, and also compared with two other models such as Random Forest (RF) and Logistic Regression (LR). The results determine sentiments that public have a positive stance towards a vaccine follows by neutral and negative. Machine learning classification models performed better than the VADER lexicon method on vaccine Tweets. It is anticipated this study aims to help the government in long run, to make policies and a better environment for people suffering from negative thoughts during the ongoing pandemic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
22
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信