免疫自适应小波在数据挖掘中的应用

Jianguo Zheng, Ping Song
{"title":"免疫自适应小波在数据挖掘中的应用","authors":"Jianguo Zheng, Ping Song","doi":"10.1109/ICMLC.2002.1176729","DOIUrl":null,"url":null,"abstract":"Based on an existing artificial neural network, a learning algorithm of the immune self-adaptation wavelet neural network is proposed which integrates the immune mechanism and the structure of neural information processing. This model makes it easy for a user to directly utilize the characteristic information of a pending problem and to simplify the original structure through adjusting the activation function with prior knowledge. Theoretical analysis and a simulation test for a data mining problem show that this method is effective and feasible.","PeriodicalId":90702,"journal":{"name":"Proceedings. International Conference on Machine Learning and Cybernetics","volume":"33 1","pages":"156-160 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Use of immune self-adaptation wavelet for data mining\",\"authors\":\"Jianguo Zheng, Ping Song\",\"doi\":\"10.1109/ICMLC.2002.1176729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on an existing artificial neural network, a learning algorithm of the immune self-adaptation wavelet neural network is proposed which integrates the immune mechanism and the structure of neural information processing. This model makes it easy for a user to directly utilize the characteristic information of a pending problem and to simplify the original structure through adjusting the activation function with prior knowledge. Theoretical analysis and a simulation test for a data mining problem show that this method is effective and feasible.\",\"PeriodicalId\":90702,\"journal\":{\"name\":\"Proceedings. International Conference on Machine Learning and Cybernetics\",\"volume\":\"33 1\",\"pages\":\"156-160 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2002.1176729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2002.1176729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在现有人工神经网络的基础上,提出了一种将免疫机制与神经信息处理结构相结合的免疫自适应小波神经网络学习算法。该模型便于用户直接利用待解决问题的特征信息,并通过利用先验知识调整激活函数来简化原有结构。理论分析和对一个数据挖掘问题的仿真测试表明了该方法的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Use of immune self-adaptation wavelet for data mining
Based on an existing artificial neural network, a learning algorithm of the immune self-adaptation wavelet neural network is proposed which integrates the immune mechanism and the structure of neural information processing. This model makes it easy for a user to directly utilize the characteristic information of a pending problem and to simplify the original structure through adjusting the activation function with prior knowledge. Theoretical analysis and a simulation test for a data mining problem show that this method is effective and feasible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信