{"title":"关于多重宇宙的验证","authors":"Thomas Stenersen","doi":"10.3844/pisp.2022.17.20","DOIUrl":null,"url":null,"abstract":"We outline a proposal for an experimental test of Everett’s many-worlds interpretation of quantum mechanics that could potentially verify the existence of a multiverse. This proposal is based on a quantum field theory formulation of many-worlds through the path integral formalism and a careful choice of the vacuum state.","PeriodicalId":20143,"journal":{"name":"Physics Research International","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Verification of the Multiverse\",\"authors\":\"Thomas Stenersen\",\"doi\":\"10.3844/pisp.2022.17.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We outline a proposal for an experimental test of Everett’s many-worlds interpretation of quantum mechanics that could potentially verify the existence of a multiverse. This proposal is based on a quantum field theory formulation of many-worlds through the path integral formalism and a careful choice of the vacuum state.\",\"PeriodicalId\":20143,\"journal\":{\"name\":\"Physics Research International\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Research International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/pisp.2022.17.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Research International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/pisp.2022.17.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We outline a proposal for an experimental test of Everett’s many-worlds interpretation of quantum mechanics that could potentially verify the existence of a multiverse. This proposal is based on a quantum field theory formulation of many-worlds through the path integral formalism and a careful choice of the vacuum state.