{"title":"面向未来非地面6G网络的CMOS ka波段无线收发器","authors":"A. Shirane, Yun Wang, K. Okada","doi":"10.1109/ICSICT49897.2020.9278199","DOIUrl":null,"url":null,"abstract":"This paper introduces a wireless transceiver fabricated with a standard Si CMOS process for a Ka-band satellite communication. For the increasing demand for the high speed and low-cost satellite communication terminals, the presented transceiver IC contributes to the reduction of the number of components, PCB footprints, and power consumption. The transceiver exploits a direct-conversion architecture and consists of two paths multi-mode receiver and one path high linearity transmitter. The integrated two receiver paths enable the polarization and frequency multiplexing to enhance the data rate. The transceiver can operate in the frequency range of the Ka-band satellite communication with higher integration level and lower power consumption compared with the conventional Ka-band wireless transceivers.","PeriodicalId":6727,"journal":{"name":"2020 IEEE 15th International Conference on Solid-State & Integrated Circuit Technology (ICSICT)","volume":"88 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A CMOS Ka-Band Wireless Transceiver for Future Non-Terrestrial 6G Networks\",\"authors\":\"A. Shirane, Yun Wang, K. Okada\",\"doi\":\"10.1109/ICSICT49897.2020.9278199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a wireless transceiver fabricated with a standard Si CMOS process for a Ka-band satellite communication. For the increasing demand for the high speed and low-cost satellite communication terminals, the presented transceiver IC contributes to the reduction of the number of components, PCB footprints, and power consumption. The transceiver exploits a direct-conversion architecture and consists of two paths multi-mode receiver and one path high linearity transmitter. The integrated two receiver paths enable the polarization and frequency multiplexing to enhance the data rate. The transceiver can operate in the frequency range of the Ka-band satellite communication with higher integration level and lower power consumption compared with the conventional Ka-band wireless transceivers.\",\"PeriodicalId\":6727,\"journal\":{\"name\":\"2020 IEEE 15th International Conference on Solid-State & Integrated Circuit Technology (ICSICT)\",\"volume\":\"88 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 15th International Conference on Solid-State & Integrated Circuit Technology (ICSICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSICT49897.2020.9278199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 15th International Conference on Solid-State & Integrated Circuit Technology (ICSICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSICT49897.2020.9278199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A CMOS Ka-Band Wireless Transceiver for Future Non-Terrestrial 6G Networks
This paper introduces a wireless transceiver fabricated with a standard Si CMOS process for a Ka-band satellite communication. For the increasing demand for the high speed and low-cost satellite communication terminals, the presented transceiver IC contributes to the reduction of the number of components, PCB footprints, and power consumption. The transceiver exploits a direct-conversion architecture and consists of two paths multi-mode receiver and one path high linearity transmitter. The integrated two receiver paths enable the polarization and frequency multiplexing to enhance the data rate. The transceiver can operate in the frequency range of the Ka-band satellite communication with higher integration level and lower power consumption compared with the conventional Ka-band wireless transceivers.