先进节点逻辑3D封装的D2W工艺与可靠性

L. England, D. Fisher, K. Rivera, B. Guthrie, Ping-Jui Kuo, Chang-Chi Lee, Che-Ming Hsu, Fan-Yu Min, Kuo-Chang Kang, Chen-Yuan Weng
{"title":"先进节点逻辑3D封装的D2W工艺与可靠性","authors":"L. England, D. Fisher, K. Rivera, B. Guthrie, Ping-Jui Kuo, Chang-Chi Lee, Che-Ming Hsu, Fan-Yu Min, Kuo-Chang Kang, Chen-Yuan Weng","doi":"10.1109/ECTC.2019.00096","DOIUrl":null,"url":null,"abstract":"In order to support emerging applications such as machine learning, where large amounts of fast access memory are required, the use of 3D packaging is inevitable. Previous work on 3D packaging with advanced node logic has shown that the technology is ready for implementation. In this paper, GF and ASE have demonstrated a Die-to-Wafer (D2W) process using 50um thickness logic wafers as the base. The 3D package also includes integrated thermal structures for heat removal from the base logic die. The process flow will be reviewed in detail, and challenges that were faced and overcome will be discussed. Reliability performance of the 3D package will also be reported. In addition, extensive thermal modeling was completed to understand the impact of two competing solutions for heat removal, which will also be reviewed in detail.","PeriodicalId":6726,"journal":{"name":"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)","volume":"16 1","pages":"600-606"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Die-to-Wafer (D2W) Processing and Reliability for 3D Packaging of Advanced Node Logic\",\"authors\":\"L. England, D. Fisher, K. Rivera, B. Guthrie, Ping-Jui Kuo, Chang-Chi Lee, Che-Ming Hsu, Fan-Yu Min, Kuo-Chang Kang, Chen-Yuan Weng\",\"doi\":\"10.1109/ECTC.2019.00096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to support emerging applications such as machine learning, where large amounts of fast access memory are required, the use of 3D packaging is inevitable. Previous work on 3D packaging with advanced node logic has shown that the technology is ready for implementation. In this paper, GF and ASE have demonstrated a Die-to-Wafer (D2W) process using 50um thickness logic wafers as the base. The 3D package also includes integrated thermal structures for heat removal from the base logic die. The process flow will be reviewed in detail, and challenges that were faced and overcome will be discussed. Reliability performance of the 3D package will also be reported. In addition, extensive thermal modeling was completed to understand the impact of two competing solutions for heat removal, which will also be reviewed in detail.\",\"PeriodicalId\":6726,\"journal\":{\"name\":\"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)\",\"volume\":\"16 1\",\"pages\":\"600-606\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC.2019.00096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2019.00096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

为了支持机器学习等需要大量快速访问存储器的新兴应用,使用3D封装是不可避免的。先前对具有先进节点逻辑的3D封装的研究表明,该技术已经准备好实施。在本文中,格芯和日月光展示了一种以50um厚度的逻辑晶圆为基础的芯片到晶圆(D2W)工艺。3D封装还包括用于从基本逻辑模具散热的集成热结构。将详细回顾工艺流程,并讨论所面临和克服的挑战。3D封装的可靠性性能也将被报告。此外,还完成了广泛的热建模,以了解两种相互竞争的散热解决方案的影响,并将对其进行详细审查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Die-to-Wafer (D2W) Processing and Reliability for 3D Packaging of Advanced Node Logic
In order to support emerging applications such as machine learning, where large amounts of fast access memory are required, the use of 3D packaging is inevitable. Previous work on 3D packaging with advanced node logic has shown that the technology is ready for implementation. In this paper, GF and ASE have demonstrated a Die-to-Wafer (D2W) process using 50um thickness logic wafers as the base. The 3D package also includes integrated thermal structures for heat removal from the base logic die. The process flow will be reviewed in detail, and challenges that were faced and overcome will be discussed. Reliability performance of the 3D package will also be reported. In addition, extensive thermal modeling was completed to understand the impact of two competing solutions for heat removal, which will also be reviewed in detail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信