Guozhi Wang, Zhu Huang, Fufeng Zhao, Na Li, Yuzhen Fu
{"title":"华北扬子地块马源成矿带油气成藏与密西西比河谷型铅锌矿化的关系:矿石地质和Rb - Sr同位素定年证据","authors":"Guozhi Wang, Zhu Huang, Fufeng Zhao, Na Li, Yuzhen Fu","doi":"10.1111/rge.12229","DOIUrl":null,"url":null,"abstract":"The coexistence of Pb‐Zn deposits and oil/gas reservoirs demonstrates that a close genetic connection exists between them. The spatiotemporal relationship between Pb‐Zn mineralization and hydrocarbon accumulation is the key to understanding this genetic connection. The Mayuan large‐scale Pb‐Zn metallogenic belt is composed of a number of Mississippi Valley‐type (MVT) Pb‐Zn deposits that were recently discovered on the northern margin of the Yangtze Block, China. It is hosted in the dolostone of the Sinian (Ediacaran) Dengying Formation (Z2dn). In addition to the abundant bitumen in the Mayuan Pb‐Zn metallogenic belt, the paleo‐oil reservoir and the MVT Pb‐Zn deposit overlap in space. In this study, two precise ages of 468.3 ± 3.8 Ma and 206.0 ± 6.5 Ma were obtained via the Rb‐Sr isotopic dating of galena and sphalerite from the Mayuan Pb‐Zn metallogenic belt, respectively. The early metallogenic age of 468.3 ± 3.8 Ma is similar to the previously published age of 486 ± 12 Ma. The age of 206.0 ± 6.5 Ma is consistent with the age of the metallogenic event that occurred at 200 Ma in the Upper Yangtze Pb–Zn metallogenic province of the Sichuan‐Yunnan‐Guizhou polymetallic zone, which is located on the southwest margin of the Sichuan Basin, suggesting that the metallogenic effects of this period were regional in scale in the peripheral areas of the Sichuan Basin. Previous studies have shown that two periods of hydrocarbon accumulation occurred in the oil/gas reservoir that coexists with the Pb‐Zn deposits in the study area. The Pb‐Zn mineralization at 468.3 ± 3.8 Ma occurred during the first period of hydrocarbon accumulation, while the second mineralization at 206.0 ± 6.5 Ma occurred during the transformation of the paleo‐oil reservoir to a paleogas reservoir. The spatial relationship between the paleo‐oil/‐gas reservoir and the MVT Pb‐Zn deposits and the temporal relationship between mineralization and hydrocarbon accumulation show that a close genetic relationship exists between the MVT Pb‐Zn mineralization and hydrocarbon accumulation. Analysis of metals in the source rocks forming the paleo‐oil/‐gas reservoirs show that source rocks which formed paleo‐oil/‐gas reservoirs may have provided metals for Pb‐Zn mineralization. Both the paleo‐oil/‐gas reservoirs and Pb‐Zn mineralizing fluids had the same origin.","PeriodicalId":21089,"journal":{"name":"Resource Geology","volume":"28 1","pages":"188 - 203"},"PeriodicalIF":1.1000,"publicationDate":"2020-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The relationship between hydrocarbon accumulation and Mississippi Valley‐type Pb‐Zn mineralization of the Mayuan metallogenic belt, the northern Yangtze block, SW China: Evidence from ore geology and Rb‐Sr isotopic dating\",\"authors\":\"Guozhi Wang, Zhu Huang, Fufeng Zhao, Na Li, Yuzhen Fu\",\"doi\":\"10.1111/rge.12229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The coexistence of Pb‐Zn deposits and oil/gas reservoirs demonstrates that a close genetic connection exists between them. The spatiotemporal relationship between Pb‐Zn mineralization and hydrocarbon accumulation is the key to understanding this genetic connection. The Mayuan large‐scale Pb‐Zn metallogenic belt is composed of a number of Mississippi Valley‐type (MVT) Pb‐Zn deposits that were recently discovered on the northern margin of the Yangtze Block, China. It is hosted in the dolostone of the Sinian (Ediacaran) Dengying Formation (Z2dn). In addition to the abundant bitumen in the Mayuan Pb‐Zn metallogenic belt, the paleo‐oil reservoir and the MVT Pb‐Zn deposit overlap in space. In this study, two precise ages of 468.3 ± 3.8 Ma and 206.0 ± 6.5 Ma were obtained via the Rb‐Sr isotopic dating of galena and sphalerite from the Mayuan Pb‐Zn metallogenic belt, respectively. The early metallogenic age of 468.3 ± 3.8 Ma is similar to the previously published age of 486 ± 12 Ma. The age of 206.0 ± 6.5 Ma is consistent with the age of the metallogenic event that occurred at 200 Ma in the Upper Yangtze Pb–Zn metallogenic province of the Sichuan‐Yunnan‐Guizhou polymetallic zone, which is located on the southwest margin of the Sichuan Basin, suggesting that the metallogenic effects of this period were regional in scale in the peripheral areas of the Sichuan Basin. Previous studies have shown that two periods of hydrocarbon accumulation occurred in the oil/gas reservoir that coexists with the Pb‐Zn deposits in the study area. The Pb‐Zn mineralization at 468.3 ± 3.8 Ma occurred during the first period of hydrocarbon accumulation, while the second mineralization at 206.0 ± 6.5 Ma occurred during the transformation of the paleo‐oil reservoir to a paleogas reservoir. The spatial relationship between the paleo‐oil/‐gas reservoir and the MVT Pb‐Zn deposits and the temporal relationship between mineralization and hydrocarbon accumulation show that a close genetic relationship exists between the MVT Pb‐Zn mineralization and hydrocarbon accumulation. Analysis of metals in the source rocks forming the paleo‐oil/‐gas reservoirs show that source rocks which formed paleo‐oil/‐gas reservoirs may have provided metals for Pb‐Zn mineralization. Both the paleo‐oil/‐gas reservoirs and Pb‐Zn mineralizing fluids had the same origin.\",\"PeriodicalId\":21089,\"journal\":{\"name\":\"Resource Geology\",\"volume\":\"28 1\",\"pages\":\"188 - 203\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resource Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1111/rge.12229\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resource Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/rge.12229","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOLOGY","Score":null,"Total":0}
The relationship between hydrocarbon accumulation and Mississippi Valley‐type Pb‐Zn mineralization of the Mayuan metallogenic belt, the northern Yangtze block, SW China: Evidence from ore geology and Rb‐Sr isotopic dating
The coexistence of Pb‐Zn deposits and oil/gas reservoirs demonstrates that a close genetic connection exists between them. The spatiotemporal relationship between Pb‐Zn mineralization and hydrocarbon accumulation is the key to understanding this genetic connection. The Mayuan large‐scale Pb‐Zn metallogenic belt is composed of a number of Mississippi Valley‐type (MVT) Pb‐Zn deposits that were recently discovered on the northern margin of the Yangtze Block, China. It is hosted in the dolostone of the Sinian (Ediacaran) Dengying Formation (Z2dn). In addition to the abundant bitumen in the Mayuan Pb‐Zn metallogenic belt, the paleo‐oil reservoir and the MVT Pb‐Zn deposit overlap in space. In this study, two precise ages of 468.3 ± 3.8 Ma and 206.0 ± 6.5 Ma were obtained via the Rb‐Sr isotopic dating of galena and sphalerite from the Mayuan Pb‐Zn metallogenic belt, respectively. The early metallogenic age of 468.3 ± 3.8 Ma is similar to the previously published age of 486 ± 12 Ma. The age of 206.0 ± 6.5 Ma is consistent with the age of the metallogenic event that occurred at 200 Ma in the Upper Yangtze Pb–Zn metallogenic province of the Sichuan‐Yunnan‐Guizhou polymetallic zone, which is located on the southwest margin of the Sichuan Basin, suggesting that the metallogenic effects of this period were regional in scale in the peripheral areas of the Sichuan Basin. Previous studies have shown that two periods of hydrocarbon accumulation occurred in the oil/gas reservoir that coexists with the Pb‐Zn deposits in the study area. The Pb‐Zn mineralization at 468.3 ± 3.8 Ma occurred during the first period of hydrocarbon accumulation, while the second mineralization at 206.0 ± 6.5 Ma occurred during the transformation of the paleo‐oil reservoir to a paleogas reservoir. The spatial relationship between the paleo‐oil/‐gas reservoir and the MVT Pb‐Zn deposits and the temporal relationship between mineralization and hydrocarbon accumulation show that a close genetic relationship exists between the MVT Pb‐Zn mineralization and hydrocarbon accumulation. Analysis of metals in the source rocks forming the paleo‐oil/‐gas reservoirs show that source rocks which formed paleo‐oil/‐gas reservoirs may have provided metals for Pb‐Zn mineralization. Both the paleo‐oil/‐gas reservoirs and Pb‐Zn mineralizing fluids had the same origin.
期刊介绍:
Resource Geology is an international journal focusing on economic geology, geochemistry and environmental geology. Its purpose is to contribute to the promotion of earth sciences related to metallic and non-metallic mineral deposits mainly in Asia, Oceania and the Circum-Pacific region, although other parts of the world are also considered.
Launched in 1998 by the Society for Resource Geology, the journal is published quarterly in English, making it more accessible to the international geological community. The journal publishes high quality papers of interest to those engaged in research and exploration of mineral deposits.