ENDMal:一个使用系统调用序列的反混淆和协作恶意软件检测系统

Huabiao Lu, Xiaofeng Wang, Baokang Zhao, Fei Wang, Jinshu Su
{"title":"ENDMal:一个使用系统调用序列的反混淆和协作恶意软件检测系统","authors":"Huabiao Lu,&nbsp;Xiaofeng Wang,&nbsp;Baokang Zhao,&nbsp;Fei Wang,&nbsp;Jinshu Su","doi":"10.1016/j.mcm.2013.03.008","DOIUrl":null,"url":null,"abstract":"<div><p>Malware obfuscation obscures malware into different versions, making traditional syntactic nature based detection ineffective. Furthermore, with the huge and exponentially growing number of malware samples, existing malware detection systems are either evaded by malware obfuscation, or overwhelmed by numerous malware samples. This paper proposes an anti-obfuscation, scalable and collaborative malware detection system—ENDMal. ENDMal identifies the program that behaves suspiciously in end-hosts and similarly between a group of suspicious programs in a wide area as malicious. We present the Iterative Sequence Alignment (ISA) method to defeat malware obfuscation. Instead of using complex behavior graph, we propose the Handle dependences and Probabilistic Ordering Dependence (HPOD) technology to represent the program behaviors. In addition, we design a novel information sharing infrastructure, RENShare, to collaboratively congregate the group characteristics of programs spreading over different network areas. Our experimental results show that ENDMal can detect unknown malwares much faster than the centralized detection system and is more effective than the existing distributed detection system.</p></div>","PeriodicalId":49872,"journal":{"name":"Mathematical and Computer Modelling","volume":"58 5","pages":"Pages 1140-1154"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mcm.2013.03.008","citationCount":"18","resultStr":"{\"title\":\"ENDMal: An anti-obfuscation and collaborative malware detection system using syscall sequences\",\"authors\":\"Huabiao Lu,&nbsp;Xiaofeng Wang,&nbsp;Baokang Zhao,&nbsp;Fei Wang,&nbsp;Jinshu Su\",\"doi\":\"10.1016/j.mcm.2013.03.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Malware obfuscation obscures malware into different versions, making traditional syntactic nature based detection ineffective. Furthermore, with the huge and exponentially growing number of malware samples, existing malware detection systems are either evaded by malware obfuscation, or overwhelmed by numerous malware samples. This paper proposes an anti-obfuscation, scalable and collaborative malware detection system—ENDMal. ENDMal identifies the program that behaves suspiciously in end-hosts and similarly between a group of suspicious programs in a wide area as malicious. We present the Iterative Sequence Alignment (ISA) method to defeat malware obfuscation. Instead of using complex behavior graph, we propose the Handle dependences and Probabilistic Ordering Dependence (HPOD) technology to represent the program behaviors. In addition, we design a novel information sharing infrastructure, RENShare, to collaboratively congregate the group characteristics of programs spreading over different network areas. Our experimental results show that ENDMal can detect unknown malwares much faster than the centralized detection system and is more effective than the existing distributed detection system.</p></div>\",\"PeriodicalId\":49872,\"journal\":{\"name\":\"Mathematical and Computer Modelling\",\"volume\":\"58 5\",\"pages\":\"Pages 1140-1154\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.mcm.2013.03.008\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical and Computer Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895717713001064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Computer Modelling","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895717713001064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

恶意软件混淆将恶意软件模糊成不同的版本,使得传统的基于语法性质的检测无效。此外,随着恶意软件样本数量的巨大和指数级增长,现有的恶意软件检测系统要么被恶意软件混淆所逃避,要么被大量的恶意软件样本所淹没。提出了一种抗混淆、可扩展、协同的恶意软件检测系统endmal。ENDMal识别在终端主机中行为可疑的程序,以及在广泛区域内一组可疑程序之间的恶意程序。我们提出了迭代序列对齐(ISA)方法来挫败恶意软件混淆。我们提出了句柄依赖和概率排序依赖(HPOD)技术来代替复杂的行为图来表示程序行为。此外,我们设计了一种新的信息共享基础设施,RENShare,以协同聚集分布在不同网络区域的程序的组特征。实验结果表明,ENDMal可以比集中式检测系统更快地检测出未知恶意软件,并且比现有的分布式检测系统更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ENDMal: An anti-obfuscation and collaborative malware detection system using syscall sequences

Malware obfuscation obscures malware into different versions, making traditional syntactic nature based detection ineffective. Furthermore, with the huge and exponentially growing number of malware samples, existing malware detection systems are either evaded by malware obfuscation, or overwhelmed by numerous malware samples. This paper proposes an anti-obfuscation, scalable and collaborative malware detection system—ENDMal. ENDMal identifies the program that behaves suspiciously in end-hosts and similarly between a group of suspicious programs in a wide area as malicious. We present the Iterative Sequence Alignment (ISA) method to defeat malware obfuscation. Instead of using complex behavior graph, we propose the Handle dependences and Probabilistic Ordering Dependence (HPOD) technology to represent the program behaviors. In addition, we design a novel information sharing infrastructure, RENShare, to collaboratively congregate the group characteristics of programs spreading over different network areas. Our experimental results show that ENDMal can detect unknown malwares much faster than the centralized detection system and is more effective than the existing distributed detection system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical and Computer Modelling
Mathematical and Computer Modelling 数学-计算机:跨学科应用
自引率
0.00%
发文量
0
审稿时长
9.5 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信