{"title":"用deep-rie制备高纵横比纳米级CFX结构","authors":"T. Arakawa, H. Kusakawa, S. Shoji","doi":"10.1109/MEMSYS.2007.4432970","DOIUrl":null,"url":null,"abstract":"High aspect ratio (>500) nano-scale CFx (fluorocarbon) \"tube\" and \"test-tube\" arrays were realized using Deep Reactive Ion Etching (RIE). Sidewall CFx nano structures of 200 nm in thickness formed during Deep RIE passivation process were used for the purpose. The film thickness of CFx was controlled from 200 nm to 500 nm, and the height more than 100 mum was available. As a result, the aspect ratio is larger than 500. This fluorocarbon tube and test-tube array are useful tools for chemical and biological applications.","PeriodicalId":6388,"journal":{"name":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"66 1","pages":"287-290"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High aspect ratio nano-scale CFX structures fabricated by deep-rie\",\"authors\":\"T. Arakawa, H. Kusakawa, S. Shoji\",\"doi\":\"10.1109/MEMSYS.2007.4432970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High aspect ratio (>500) nano-scale CFx (fluorocarbon) \\\"tube\\\" and \\\"test-tube\\\" arrays were realized using Deep Reactive Ion Etching (RIE). Sidewall CFx nano structures of 200 nm in thickness formed during Deep RIE passivation process were used for the purpose. The film thickness of CFx was controlled from 200 nm to 500 nm, and the height more than 100 mum was available. As a result, the aspect ratio is larger than 500. This fluorocarbon tube and test-tube array are useful tools for chemical and biological applications.\",\"PeriodicalId\":6388,\"journal\":{\"name\":\"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"66 1\",\"pages\":\"287-290\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2007.4432970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2007.4432970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High aspect ratio nano-scale CFX structures fabricated by deep-rie
High aspect ratio (>500) nano-scale CFx (fluorocarbon) "tube" and "test-tube" arrays were realized using Deep Reactive Ion Etching (RIE). Sidewall CFx nano structures of 200 nm in thickness formed during Deep RIE passivation process were used for the purpose. The film thickness of CFx was controlled from 200 nm to 500 nm, and the height more than 100 mum was available. As a result, the aspect ratio is larger than 500. This fluorocarbon tube and test-tube array are useful tools for chemical and biological applications.