图中的三角形度和3图中的四面体覆盖

Victor Falgas‐Ravry, K. Markström, Yi Zhao
{"title":"图中的三角形度和3图中的四面体覆盖","authors":"Victor Falgas‐Ravry, K. Markström, Yi Zhao","doi":"10.1017/S0963548320000061","DOIUrl":null,"url":null,"abstract":"Abstract We investigate a covering problem in 3-uniform hypergraphs (3-graphs): Given a 3-graph F, what is c 1(n, F), the least integer d such that if G is an n-vertex 3-graph with minimum vertex-degree \n$\\delta_1(G)>d$\n then every vertex of G is contained in a copy of F in G? We asymptotically determine c 1(n, F) when F is the generalized triangle \n$K_4^{(3)-}$\n , and we give close to optimal bounds in the case where F is the tetrahedron \n$K_4^{(3)}$\n (the complete 3-graph on 4 vertices). This latter problem turns out to be a special instance of the following problem for graphs: Given an n-vertex graph G with \n$m> n^2/4$\n edges, what is the largest t such that some vertex in G must be contained in t triangles? We give upper bound constructions for this problem that we conjecture are asymptotically tight. We prove our conjecture for tripartite graphs, and use flag algebra computations to give some evidence of its truth in the general case.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Triangle-degrees in graphs and tetrahedron coverings in 3-graphs\",\"authors\":\"Victor Falgas‐Ravry, K. Markström, Yi Zhao\",\"doi\":\"10.1017/S0963548320000061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We investigate a covering problem in 3-uniform hypergraphs (3-graphs): Given a 3-graph F, what is c 1(n, F), the least integer d such that if G is an n-vertex 3-graph with minimum vertex-degree \\n$\\\\delta_1(G)>d$\\n then every vertex of G is contained in a copy of F in G? We asymptotically determine c 1(n, F) when F is the generalized triangle \\n$K_4^{(3)-}$\\n , and we give close to optimal bounds in the case where F is the tetrahedron \\n$K_4^{(3)}$\\n (the complete 3-graph on 4 vertices). This latter problem turns out to be a special instance of the following problem for graphs: Given an n-vertex graph G with \\n$m> n^2/4$\\n edges, what is the largest t such that some vertex in G must be contained in t triangles? We give upper bound constructions for this problem that we conjecture are asymptotically tight. We prove our conjecture for tripartite graphs, and use flag algebra computations to give some evidence of its truth in the general case.\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S0963548320000061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0963548320000061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

摘要研究了3-一致超图(3-图)中的一个覆盖问题:给定一个3-图F, c (n, F),最小整数d是什么,使得如果G是一个顶点度最小的n顶点3-图$\delta_1(G)>d$,那么G的每个顶点都包含在G中的F的副本中?当F为广义三角形$K_4^{(3)-}$时,我们渐近地确定了c1 (n, F),当F为四面体$K_4^{(3)}$时,我们给出了接近最优界。后一个问题是以下图问题的一个特殊实例:给定一个n顶点的图G,它有$m> n^2/4$条边,那么使G中的某个顶点必须包含在t个三角形中的最大t是多少?我们给出了这个问题的上界构造,并推测它是渐近紧的。我们证明了关于三部图的猜想,并在一般情况下用标志代数计算给出了它的成立的一些证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Triangle-degrees in graphs and tetrahedron coverings in 3-graphs
Abstract We investigate a covering problem in 3-uniform hypergraphs (3-graphs): Given a 3-graph F, what is c 1(n, F), the least integer d such that if G is an n-vertex 3-graph with minimum vertex-degree $\delta_1(G)>d$ then every vertex of G is contained in a copy of F in G? We asymptotically determine c 1(n, F) when F is the generalized triangle $K_4^{(3)-}$ , and we give close to optimal bounds in the case where F is the tetrahedron $K_4^{(3)}$ (the complete 3-graph on 4 vertices). This latter problem turns out to be a special instance of the following problem for graphs: Given an n-vertex graph G with $m> n^2/4$ edges, what is the largest t such that some vertex in G must be contained in t triangles? We give upper bound constructions for this problem that we conjecture are asymptotically tight. We prove our conjecture for tripartite graphs, and use flag algebra computations to give some evidence of its truth in the general case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信