{"title":"胃干细胞研究和胃类器官","authors":"Haengdueng Jeong, K. Nam","doi":"10.51335/organoid.2022.2.e27","DOIUrl":null,"url":null,"abstract":"The stomach is a complex organ lined with ordered epithelium consisting of different adult stem cell (ASC) pools. In the previous decade, research into gastric epithelial stem cells has been performed using lineage tracing methods, and several putative ASC markers in the gastric gland have been identified, although their roles in homeostasis maintenance and the origin of cancer remain to be clarified. With advances in gastric stem cell research, 3-dimensional (3D) organoid culture has been developed on the basis of in-depth insights into the control of stem cell self-renewal, proliferation, and differentiation. Since the initial report that single intestinal stem cells have the ability to generate long-lived 3D structures that exhibit budding forms and self-renewal, tissue-specific adaptations of this method have been established in various organs, such as the small intestine, colon, liver, and stomach. In the murine stomach, putative ASCs isolated from the corpus and antrum generate gastric organoids that can simulate organ-specific cells to some extent. In addition, a few trials have been conducted to generate long-lived 3D organoids using human-derived ASCs and pluripotent stem cells. We hope that this review will provide comprehensive knowledge on gastric stem cell research and gastric organoids.","PeriodicalId":100198,"journal":{"name":"Brain Organoid and Systems Neuroscience Journal","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gastric stem cell research and gastric organoids\",\"authors\":\"Haengdueng Jeong, K. Nam\",\"doi\":\"10.51335/organoid.2022.2.e27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stomach is a complex organ lined with ordered epithelium consisting of different adult stem cell (ASC) pools. In the previous decade, research into gastric epithelial stem cells has been performed using lineage tracing methods, and several putative ASC markers in the gastric gland have been identified, although their roles in homeostasis maintenance and the origin of cancer remain to be clarified. With advances in gastric stem cell research, 3-dimensional (3D) organoid culture has been developed on the basis of in-depth insights into the control of stem cell self-renewal, proliferation, and differentiation. Since the initial report that single intestinal stem cells have the ability to generate long-lived 3D structures that exhibit budding forms and self-renewal, tissue-specific adaptations of this method have been established in various organs, such as the small intestine, colon, liver, and stomach. In the murine stomach, putative ASCs isolated from the corpus and antrum generate gastric organoids that can simulate organ-specific cells to some extent. In addition, a few trials have been conducted to generate long-lived 3D organoids using human-derived ASCs and pluripotent stem cells. We hope that this review will provide comprehensive knowledge on gastric stem cell research and gastric organoids.\",\"PeriodicalId\":100198,\"journal\":{\"name\":\"Brain Organoid and Systems Neuroscience Journal\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Organoid and Systems Neuroscience Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51335/organoid.2022.2.e27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Organoid and Systems Neuroscience Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51335/organoid.2022.2.e27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The stomach is a complex organ lined with ordered epithelium consisting of different adult stem cell (ASC) pools. In the previous decade, research into gastric epithelial stem cells has been performed using lineage tracing methods, and several putative ASC markers in the gastric gland have been identified, although their roles in homeostasis maintenance and the origin of cancer remain to be clarified. With advances in gastric stem cell research, 3-dimensional (3D) organoid culture has been developed on the basis of in-depth insights into the control of stem cell self-renewal, proliferation, and differentiation. Since the initial report that single intestinal stem cells have the ability to generate long-lived 3D structures that exhibit budding forms and self-renewal, tissue-specific adaptations of this method have been established in various organs, such as the small intestine, colon, liver, and stomach. In the murine stomach, putative ASCs isolated from the corpus and antrum generate gastric organoids that can simulate organ-specific cells to some extent. In addition, a few trials have been conducted to generate long-lived 3D organoids using human-derived ASCs and pluripotent stem cells. We hope that this review will provide comprehensive knowledge on gastric stem cell research and gastric organoids.