一般线性群的痴呆字符的Monk规则

IF 0.7 4区 数学 Q2 MATHEMATICS
Sami H. Assaf, Danjoseph Quijada
{"title":"一般线性群的痴呆字符的Monk规则","authors":"Sami H. Assaf, Danjoseph Quijada","doi":"10.37236/11425","DOIUrl":null,"url":null,"abstract":"Key polynomials are characters of Demazure modules for the general linear group that generalize the Schur polynomials. We prove a nonsymmetric generalization of Monk's rule by giving a cancellation-free, multiplicity-free formula for the key polynomial expansion of the product of an arbitrary key polynomial with a degree one key polynomial.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"46 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Monk's Rule for Demazure Characters of the General Linear Group\",\"authors\":\"Sami H. Assaf, Danjoseph Quijada\",\"doi\":\"10.37236/11425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Key polynomials are characters of Demazure modules for the general linear group that generalize the Schur polynomials. We prove a nonsymmetric generalization of Monk's rule by giving a cancellation-free, multiplicity-free formula for the key polynomial expansion of the product of an arbitrary key polynomial with a degree one key polynomial.\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37236/11425\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37236/11425","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

关键多项式是泛化舒尔多项式的一般线性群的Demazure模的特征。通过给出任意键多项式与一次键多项式乘积的键多项式展开式的一个无消去、无重性的公式,证明了Monk规则的非对称推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monk's Rule for Demazure Characters of the General Linear Group
Key polynomials are characters of Demazure modules for the general linear group that generalize the Schur polynomials. We prove a nonsymmetric generalization of Monk's rule by giving a cancellation-free, multiplicity-free formula for the key polynomial expansion of the product of an arbitrary key polynomial with a degree one key polynomial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信