广义线性模型因果效应的敏感性分析

IF 1.7 4区 医学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
A. Sjölander, E. Gabriel, I. Ciocănea-Teodorescu
{"title":"广义线性模型因果效应的敏感性分析","authors":"A. Sjölander, E. Gabriel, I. Ciocănea-Teodorescu","doi":"10.1515/jci-2022-0040","DOIUrl":null,"url":null,"abstract":"Abstract Residual confounding is a common source of bias in observational studies. In this article, we build upon a series of sensitivity analyses methods for residual confounding developed by Brumback et al. and Chiba whose sensitivity parameters are constructed to quantify deviation from conditional exchangeability, given measured confounders. These sensitivity parameters are combined with the observed data to produce a “bias-corrected” estimate of the causal effect of interest. We provide important generalizations of these sensitivity analyses, by allowing for arbitrary exposures and a wide range of different causal effect measures, through the specification of the target causal effect as a parameter in a generalized linear model with the arbitrary link function. We show how our generalized sensitivity analysis can be easily implemented with standard software, and how its sensitivity parameters can be calibrated against measured confounders. We demonstrate our sensitivity analysis with an application to publicly available data from a cohort study of behavior patterns and coronary heart disease.","PeriodicalId":48576,"journal":{"name":"Journal of Causal Inference","volume":"60 1","pages":"441 - 479"},"PeriodicalIF":1.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitivity analysis for causal effects with generalized linear models\",\"authors\":\"A. Sjölander, E. Gabriel, I. Ciocănea-Teodorescu\",\"doi\":\"10.1515/jci-2022-0040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Residual confounding is a common source of bias in observational studies. In this article, we build upon a series of sensitivity analyses methods for residual confounding developed by Brumback et al. and Chiba whose sensitivity parameters are constructed to quantify deviation from conditional exchangeability, given measured confounders. These sensitivity parameters are combined with the observed data to produce a “bias-corrected” estimate of the causal effect of interest. We provide important generalizations of these sensitivity analyses, by allowing for arbitrary exposures and a wide range of different causal effect measures, through the specification of the target causal effect as a parameter in a generalized linear model with the arbitrary link function. We show how our generalized sensitivity analysis can be easily implemented with standard software, and how its sensitivity parameters can be calibrated against measured confounders. We demonstrate our sensitivity analysis with an application to publicly available data from a cohort study of behavior patterns and coronary heart disease.\",\"PeriodicalId\":48576,\"journal\":{\"name\":\"Journal of Causal Inference\",\"volume\":\"60 1\",\"pages\":\"441 - 479\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Causal Inference\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1515/jci-2022-0040\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Causal Inference","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/jci-2022-0040","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

残留混杂是观察性研究中常见的偏倚来源。在本文中,我们建立在Brumback等人和Chiba开发的一系列残余混杂的敏感性分析方法的基础上,这些方法的敏感性参数被构建为量化给定测量混杂因素的条件可交换性偏差。这些敏感性参数与观察到的数据相结合,产生对感兴趣的因果效应的“偏差校正”估计。通过在具有任意链接函数的广义线性模型中指定目标因果效应作为参数,通过允许任意暴露和广泛的不同因果效应测量,我们提供了这些敏感性分析的重要概括。我们展示了如何使用标准软件轻松实现广义灵敏度分析,以及如何根据测量的混杂因素校准其灵敏度参数。我们通过对行为模式和冠心病的队列研究的公开可用数据的应用来证明我们的敏感性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensitivity analysis for causal effects with generalized linear models
Abstract Residual confounding is a common source of bias in observational studies. In this article, we build upon a series of sensitivity analyses methods for residual confounding developed by Brumback et al. and Chiba whose sensitivity parameters are constructed to quantify deviation from conditional exchangeability, given measured confounders. These sensitivity parameters are combined with the observed data to produce a “bias-corrected” estimate of the causal effect of interest. We provide important generalizations of these sensitivity analyses, by allowing for arbitrary exposures and a wide range of different causal effect measures, through the specification of the target causal effect as a parameter in a generalized linear model with the arbitrary link function. We show how our generalized sensitivity analysis can be easily implemented with standard software, and how its sensitivity parameters can be calibrated against measured confounders. We demonstrate our sensitivity analysis with an application to publicly available data from a cohort study of behavior patterns and coronary heart disease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Causal Inference
Journal of Causal Inference Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.90
自引率
14.30%
发文量
15
审稿时长
86 weeks
期刊介绍: Journal of Causal Inference (JCI) publishes papers on theoretical and applied causal research across the range of academic disciplines that use quantitative tools to study causality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信