{"title":"物联网网络流量的对数正态分布到达队列分析","authors":"Shachi Sharma;Prakash Datt Bhatt","doi":"10.1109/LNET.2023.3306419","DOIUrl":null,"url":null,"abstract":"Statistical analysis of IoT network traffic establishes the presence of lognormal distributed inter-arrivals. This letter presents analysis of LN/M/1 queueing model using approximate results of Laplace-Stieltjes transformation of lognormal distribution in terms of Lambert \n<inline-formula> <tex-math>${{\\mathcal { W}}}$ </tex-math></inline-formula>\n(.) function. The comparative performance evaluation of the LN/M/1 model with traditional M/M/1 model reveals that the quality of service metrics of LN/M/1 model mostly remain lower than M/M/1 implying that less number of buffers are required in IoT systems driven by such traffic. The asymptotic expressions for loss probability are derived using finite capacity LN/M/1/N model for different values of traffic intensity.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"5 4","pages":"260-264"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Queues Fed by Lognormal Distributed Arrivals for IoT Network Traffic\",\"authors\":\"Shachi Sharma;Prakash Datt Bhatt\",\"doi\":\"10.1109/LNET.2023.3306419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Statistical analysis of IoT network traffic establishes the presence of lognormal distributed inter-arrivals. This letter presents analysis of LN/M/1 queueing model using approximate results of Laplace-Stieltjes transformation of lognormal distribution in terms of Lambert \\n<inline-formula> <tex-math>${{\\\\mathcal { W}}}$ </tex-math></inline-formula>\\n(.) function. The comparative performance evaluation of the LN/M/1 model with traditional M/M/1 model reveals that the quality of service metrics of LN/M/1 model mostly remain lower than M/M/1 implying that less number of buffers are required in IoT systems driven by such traffic. The asymptotic expressions for loss probability are derived using finite capacity LN/M/1/N model for different values of traffic intensity.\",\"PeriodicalId\":100628,\"journal\":{\"name\":\"IEEE Networking Letters\",\"volume\":\"5 4\",\"pages\":\"260-264\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Networking Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10224295/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10224295/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of Queues Fed by Lognormal Distributed Arrivals for IoT Network Traffic
Statistical analysis of IoT network traffic establishes the presence of lognormal distributed inter-arrivals. This letter presents analysis of LN/M/1 queueing model using approximate results of Laplace-Stieltjes transformation of lognormal distribution in terms of Lambert
${{\mathcal { W}}}$
(.) function. The comparative performance evaluation of the LN/M/1 model with traditional M/M/1 model reveals that the quality of service metrics of LN/M/1 model mostly remain lower than M/M/1 implying that less number of buffers are required in IoT systems driven by such traffic. The asymptotic expressions for loss probability are derived using finite capacity LN/M/1/N model for different values of traffic intensity.