论Ozsváth与Szabó结花同源性的边界理论的非范畴化

IF 1 2区 数学 Q1 MATHEMATICS
Quantum Topology Pub Date : 2016-11-23 DOI:10.4171/QT/123
A. Manion
{"title":"论Ozsváth与Szabó结花同源性的边界理论的非范畴化","authors":"A. Manion","doi":"10.4171/QT/123","DOIUrl":null,"url":null,"abstract":"We relate decategorifications of Ozsv\\'ath-Szab\\'o's new bordered theory for knot Floer homology to representations of $\\mathcal{U}_q(\\mathfrak{gl}(1|1))$. Specifically, we consider two subalgebras $\\mathcal{C}_r(n,\\mathcal{S})$ and $\\mathcal{C}_l(n,\\mathcal{S})$ of Ozsv\\'ath- Szab\\'o's algebra $\\mathcal{B}(n,\\mathcal{S})$, and identify their Grothendieck groups with tensor products of representations $V$ and $V^*$ of $\\mathcal{U}_q(\\mathfrak{gl}(1|1))$, where $V$ is the vector representation. We identify the decategorifications of Ozsv\\'ath-Szab\\'o's DA bimodules for elementary tangles with corresponding maps between representations. Finally, when the algebras are given multi-Alexander gradings, we demonstrate a relationship between the decategorification of Ozsv\\'ath-Szab\\'o's theory and Viro's quantum relative $\\mathcal{A}^1$ of the Reshetikhin-Turaev functor based on $\\mathcal{U}_q(\\mathfrak{gl}(1|1))$.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"68 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2016-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"On the decategorification of Ozsváth and Szabó's bordered theory for knot Floer homology\",\"authors\":\"A. Manion\",\"doi\":\"10.4171/QT/123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We relate decategorifications of Ozsv\\\\'ath-Szab\\\\'o's new bordered theory for knot Floer homology to representations of $\\\\mathcal{U}_q(\\\\mathfrak{gl}(1|1))$. Specifically, we consider two subalgebras $\\\\mathcal{C}_r(n,\\\\mathcal{S})$ and $\\\\mathcal{C}_l(n,\\\\mathcal{S})$ of Ozsv\\\\'ath- Szab\\\\'o's algebra $\\\\mathcal{B}(n,\\\\mathcal{S})$, and identify their Grothendieck groups with tensor products of representations $V$ and $V^*$ of $\\\\mathcal{U}_q(\\\\mathfrak{gl}(1|1))$, where $V$ is the vector representation. We identify the decategorifications of Ozsv\\\\'ath-Szab\\\\'o's DA bimodules for elementary tangles with corresponding maps between representations. Finally, when the algebras are given multi-Alexander gradings, we demonstrate a relationship between the decategorification of Ozsv\\\\'ath-Szab\\\\'o's theory and Viro's quantum relative $\\\\mathcal{A}^1$ of the Reshetikhin-Turaev functor based on $\\\\mathcal{U}_q(\\\\mathfrak{gl}(1|1))$.\",\"PeriodicalId\":51331,\"journal\":{\"name\":\"Quantum Topology\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2016-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/QT/123\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/QT/123","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 18

摘要

我们将Ozsv\'ath-Szab\ o结花同调的新边界理论的解范畴与$\mathcal{U}_q(\mathfrak{gl}(1|1))$的表示联系起来。具体来说,我们考虑Ozsv\'ath- Szab\ o的代数$\mathcal{C}_r(n,\mathcal{S})$和$\mathcal{C}_l(n,\mathcal{S})$的两个子代数$\mathcal{C}_r(n,\mathcal{S})$,并用$\mathcal{U}_q(\mathfrak{gl}(1|1))$的表示$V$和$V^*$的张量积来识别它们的Grothendieck群,其中$V$是向量表示。我们确定了具有表示之间对应映射的初等缠结的Ozsv\'ath-Szab\'o的DA双模的非范畴性。最后,当代数被给定多重alexander分级时,我们证明了基于$\mathcal{U}_q(\mathfrak{gl}(1|1))$的Reshetikhin-Turaev函子$\mathcal{a}^1$的Ozsv\ atha - szab \ o理论的脱范畴与Viro的量子相对$\mathcal{a}^1$的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the decategorification of Ozsváth and Szabó's bordered theory for knot Floer homology
We relate decategorifications of Ozsv\'ath-Szab\'o's new bordered theory for knot Floer homology to representations of $\mathcal{U}_q(\mathfrak{gl}(1|1))$. Specifically, we consider two subalgebras $\mathcal{C}_r(n,\mathcal{S})$ and $\mathcal{C}_l(n,\mathcal{S})$ of Ozsv\'ath- Szab\'o's algebra $\mathcal{B}(n,\mathcal{S})$, and identify their Grothendieck groups with tensor products of representations $V$ and $V^*$ of $\mathcal{U}_q(\mathfrak{gl}(1|1))$, where $V$ is the vector representation. We identify the decategorifications of Ozsv\'ath-Szab\'o's DA bimodules for elementary tangles with corresponding maps between representations. Finally, when the algebras are given multi-Alexander gradings, we demonstrate a relationship between the decategorification of Ozsv\'ath-Szab\'o's theory and Viro's quantum relative $\mathcal{A}^1$ of the Reshetikhin-Turaev functor based on $\mathcal{U}_q(\mathfrak{gl}(1|1))$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Topology
Quantum Topology Mathematics-Geometry and Topology
CiteScore
1.80
自引率
9.10%
发文量
8
期刊介绍: Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular: Low-dimensional Topology Knot Theory Jones Polynomial and Khovanov Homology Topological Quantum Field Theory Quantum Groups and Hopf Algebras Mapping Class Groups and Teichmüller space Categorification Braid Groups and Braided Categories Fusion Categories Subfactors and Planar Algebras Contact and Symplectic Topology Topological Methods in Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信