{"title":"低延伸率小直径连铸小方坯生产D16(T)合金变形棒的工艺开发与试验","authors":"S. P. Galkin, A. Aleshchenko, Yu. V. Gamin","doi":"10.17073/0021-3438-2022-2-71-79","DOIUrl":null,"url":null,"abstract":"The article describes the development and pilot-scale testing of the technology for producing bars of the D16(T) aluminum alloy by radial-shear rolling from continuously cast billets with a diameter of 72 mm in several passes. The actual dimensions of rolled bars were within the ±0.16 mm tolerance for all bar diameters, which significantly surpasses the GOST 21488-97 requirements. According to the results of tensile tests, the values of ultimate strength, conventional yield strength, relative elongation and relative reduction were determined. Ultimate strength and relative elongation requirements specified by regulatory documents for the D16(T) alloy were met with a total elongation ratio of more than 4.2. In terms of plastic properties, the obtained bars surpass the GOST requirements by 2.1–2.5 times in the entire range of elongation ratios investigated starting from 2.07. At the same time, there is an increase in the relative elongation by 5.7–6.8 times in comparison with the initial cast state. The microstructure and morphology analysis conducted for secondary phases showed that with a decrease in the bar diameter (with an increase in the total elongation ratio), the average particle size of the α(AlFeMnSi) phase insoluble in the aluminum matrix decreases, which is a consequence of deformation processes developed during rolling. Additional grinding of inclusions during deformation processing can significantly reduce the possible negative effect of the insoluble phase on the mechanical properties of resulting bars, in particular on the plasticity properties. The microstructure analysis showed that bars after rolling and heat treatment are free from cracks, looseness, delamination, and other defects and meet the requirements of GOST 21488-97.","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and experimental testing of the technology for producing deformed bars of D16(T) alloy from continuously cast billets of small diameter with low elongation ratios\",\"authors\":\"S. P. Galkin, A. Aleshchenko, Yu. V. Gamin\",\"doi\":\"10.17073/0021-3438-2022-2-71-79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article describes the development and pilot-scale testing of the technology for producing bars of the D16(T) aluminum alloy by radial-shear rolling from continuously cast billets with a diameter of 72 mm in several passes. The actual dimensions of rolled bars were within the ±0.16 mm tolerance for all bar diameters, which significantly surpasses the GOST 21488-97 requirements. According to the results of tensile tests, the values of ultimate strength, conventional yield strength, relative elongation and relative reduction were determined. Ultimate strength and relative elongation requirements specified by regulatory documents for the D16(T) alloy were met with a total elongation ratio of more than 4.2. In terms of plastic properties, the obtained bars surpass the GOST requirements by 2.1–2.5 times in the entire range of elongation ratios investigated starting from 2.07. At the same time, there is an increase in the relative elongation by 5.7–6.8 times in comparison with the initial cast state. The microstructure and morphology analysis conducted for secondary phases showed that with a decrease in the bar diameter (with an increase in the total elongation ratio), the average particle size of the α(AlFeMnSi) phase insoluble in the aluminum matrix decreases, which is a consequence of deformation processes developed during rolling. Additional grinding of inclusions during deformation processing can significantly reduce the possible negative effect of the insoluble phase on the mechanical properties of resulting bars, in particular on the plasticity properties. The microstructure analysis showed that bars after rolling and heat treatment are free from cracks, looseness, delamination, and other defects and meet the requirements of GOST 21488-97.\",\"PeriodicalId\":765,\"journal\":{\"name\":\"Russian Journal of Non-Ferrous Metals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Non-Ferrous Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.17073/0021-3438-2022-2-71-79\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Non-Ferrous Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.17073/0021-3438-2022-2-71-79","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Development and experimental testing of the technology for producing deformed bars of D16(T) alloy from continuously cast billets of small diameter with low elongation ratios
The article describes the development and pilot-scale testing of the technology for producing bars of the D16(T) aluminum alloy by radial-shear rolling from continuously cast billets with a diameter of 72 mm in several passes. The actual dimensions of rolled bars were within the ±0.16 mm tolerance for all bar diameters, which significantly surpasses the GOST 21488-97 requirements. According to the results of tensile tests, the values of ultimate strength, conventional yield strength, relative elongation and relative reduction were determined. Ultimate strength and relative elongation requirements specified by regulatory documents for the D16(T) alloy were met with a total elongation ratio of more than 4.2. In terms of plastic properties, the obtained bars surpass the GOST requirements by 2.1–2.5 times in the entire range of elongation ratios investigated starting from 2.07. At the same time, there is an increase in the relative elongation by 5.7–6.8 times in comparison with the initial cast state. The microstructure and morphology analysis conducted for secondary phases showed that with a decrease in the bar diameter (with an increase in the total elongation ratio), the average particle size of the α(AlFeMnSi) phase insoluble in the aluminum matrix decreases, which is a consequence of deformation processes developed during rolling. Additional grinding of inclusions during deformation processing can significantly reduce the possible negative effect of the insoluble phase on the mechanical properties of resulting bars, in particular on the plasticity properties. The microstructure analysis showed that bars after rolling and heat treatment are free from cracks, looseness, delamination, and other defects and meet the requirements of GOST 21488-97.
期刊介绍:
Russian Journal of Non-Ferrous Metals is a journal the main goal of which is to achieve new knowledge in the following topics: extraction metallurgy, hydro- and pirometallurgy, casting, plastic deformation, metallography and heat treatment, powder metallurgy and composites, self-propagating high-temperature synthesis, surface engineering and advanced protected coatings, environments, and energy capacity in non-ferrous metallurgy.