{"title":"利用非平衡格林函数模拟研究10nm双栅MOSFET的设计和制造问题","authors":"Z. Ren, R. Venugopal, S. Datta, M. Lundstrom","doi":"10.1109/IEDM.2001.979435","DOIUrl":null,"url":null,"abstract":"The double gate (DG) MOSFET and similar structures provide the electrostatic integrity needed to scale devices to their limits. In this paper, we use a non-equilibrium Green's function (NEGF) approach to examine 10 nm-scale device design and manufacturing issues realistically. NEGF simulations are used to examine: (i) choice of body thickness, (ii) effect of body thickness variations, (iii) the required junction abruptness, (iv) sensitivity of the device to gate-S/D (source/drain) over/underlap, and (v) the impact of metal-semiconductor contact resistance. The results of this study identify key device challenges for 10 nm-scale MOSFETs.","PeriodicalId":13825,"journal":{"name":"International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224)","volume":"30 9 1","pages":"5.4.1-5.4.4"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Examination of design and manufacturing issues in a 10 nm double gate MOSFET using nonequilibrium Green's function simulation\",\"authors\":\"Z. Ren, R. Venugopal, S. Datta, M. Lundstrom\",\"doi\":\"10.1109/IEDM.2001.979435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The double gate (DG) MOSFET and similar structures provide the electrostatic integrity needed to scale devices to their limits. In this paper, we use a non-equilibrium Green's function (NEGF) approach to examine 10 nm-scale device design and manufacturing issues realistically. NEGF simulations are used to examine: (i) choice of body thickness, (ii) effect of body thickness variations, (iii) the required junction abruptness, (iv) sensitivity of the device to gate-S/D (source/drain) over/underlap, and (v) the impact of metal-semiconductor contact resistance. The results of this study identify key device challenges for 10 nm-scale MOSFETs.\",\"PeriodicalId\":13825,\"journal\":{\"name\":\"International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224)\",\"volume\":\"30 9 1\",\"pages\":\"5.4.1-5.4.4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2001.979435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2001.979435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Examination of design and manufacturing issues in a 10 nm double gate MOSFET using nonequilibrium Green's function simulation
The double gate (DG) MOSFET and similar structures provide the electrostatic integrity needed to scale devices to their limits. In this paper, we use a non-equilibrium Green's function (NEGF) approach to examine 10 nm-scale device design and manufacturing issues realistically. NEGF simulations are used to examine: (i) choice of body thickness, (ii) effect of body thickness variations, (iii) the required junction abruptness, (iv) sensitivity of the device to gate-S/D (source/drain) over/underlap, and (v) the impact of metal-semiconductor contact resistance. The results of this study identify key device challenges for 10 nm-scale MOSFETs.