{"title":"热防护用硅酸铝纤维- siboc复合泡沫的制备","authors":"Anil Painuly, B. George, K. Prabhakaran","doi":"10.1080/17436753.2023.2192077","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this study, aluminosilicate fiber-embedded SiBOC matrix composite foams are realised by a simple, cost-effective and easily scalable method. Aluminosilicate wool is transformed into a compressible preform using polyvinyl alcohol as a binder. The preforms are impregnated with methylvinylborosiloxane (MVBS), followed by heat treatment at 1400°C in an inert atmosphere. The composite foam’s density, compressive strength and thermal conductivity are modulated in the ranges 0.71–0.46 g/cc, 0.79–0.39 MPa and 0.21–0.13 Wm−1K−1, respectively, by varying MVBS concentration from 29 to 54 wt.%. While the incorporation of aluminosilicate fibers was observed to lower the thermal conductivity of the composite foams, it did not contribute to their compressive strength. Exposure of the foams to air at 1300°C for 90 min didn’t change their density, while it increased the compressive strength by up to 46% due to improved fiber-matrix adhesion and rounding of cracks.","PeriodicalId":7224,"journal":{"name":"Advances in Applied Ceramics","volume":"32 1","pages":"22 - 30"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of aluminosilicate fiber-SiBOC composite foams for thermal protection applications\",\"authors\":\"Anil Painuly, B. George, K. Prabhakaran\",\"doi\":\"10.1080/17436753.2023.2192077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this study, aluminosilicate fiber-embedded SiBOC matrix composite foams are realised by a simple, cost-effective and easily scalable method. Aluminosilicate wool is transformed into a compressible preform using polyvinyl alcohol as a binder. The preforms are impregnated with methylvinylborosiloxane (MVBS), followed by heat treatment at 1400°C in an inert atmosphere. The composite foam’s density, compressive strength and thermal conductivity are modulated in the ranges 0.71–0.46 g/cc, 0.79–0.39 MPa and 0.21–0.13 Wm−1K−1, respectively, by varying MVBS concentration from 29 to 54 wt.%. While the incorporation of aluminosilicate fibers was observed to lower the thermal conductivity of the composite foams, it did not contribute to their compressive strength. Exposure of the foams to air at 1300°C for 90 min didn’t change their density, while it increased the compressive strength by up to 46% due to improved fiber-matrix adhesion and rounding of cracks.\",\"PeriodicalId\":7224,\"journal\":{\"name\":\"Advances in Applied Ceramics\",\"volume\":\"32 1\",\"pages\":\"22 - 30\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Ceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/17436753.2023.2192077\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Ceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/17436753.2023.2192077","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Preparation of aluminosilicate fiber-SiBOC composite foams for thermal protection applications
ABSTRACT In this study, aluminosilicate fiber-embedded SiBOC matrix composite foams are realised by a simple, cost-effective and easily scalable method. Aluminosilicate wool is transformed into a compressible preform using polyvinyl alcohol as a binder. The preforms are impregnated with methylvinylborosiloxane (MVBS), followed by heat treatment at 1400°C in an inert atmosphere. The composite foam’s density, compressive strength and thermal conductivity are modulated in the ranges 0.71–0.46 g/cc, 0.79–0.39 MPa and 0.21–0.13 Wm−1K−1, respectively, by varying MVBS concentration from 29 to 54 wt.%. While the incorporation of aluminosilicate fibers was observed to lower the thermal conductivity of the composite foams, it did not contribute to their compressive strength. Exposure of the foams to air at 1300°C for 90 min didn’t change their density, while it increased the compressive strength by up to 46% due to improved fiber-matrix adhesion and rounding of cracks.
期刊介绍:
Advances in Applied Ceramics: Structural, Functional and Bioceramics provides international coverage of high-quality research on functional ceramics, engineering ceramics and bioceramics.