铁磁流体-螺旋迷宫组合密封对液体的密封性能

IF 1.1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Hujun Wang, Zhongquan Gao, Yuan Meng, Y. Li, Qiang Zhang
{"title":"铁磁流体-螺旋迷宫组合密封对液体的密封性能","authors":"Hujun Wang, Zhongquan Gao, Yuan Meng, Y. Li, Qiang Zhang","doi":"10.3233/jae-220228","DOIUrl":null,"url":null,"abstract":"When the ferrofluid is used to seal liquid, the relative movement between the ferrofluid and the sealed liquid causes the stability problem of their interface, and the sealing performance is poor. However, the spiral and the spiral sleeve of the spiral labyrinth seal interact with the sealed liquid to make it reverse flow to prevent leakage when the shaft rotates. In order to improve the performance of rotary ferrofluid seal, the ferrofluid-spiral combined seal structure and the ferrofluid-spiral labyrinth combined seal structure are designed. A combined seal test-bench is built. The pressure resistance experiments and seal life experiments of ferrofluid seal and two type of combined seals are carried out. The theoretical and experimental results show that the sealing performance of the ferrofluid-spiral labyrinth combined seal is better than that of the ferrofluid-spiral combined seal ferrofluid seal. Ferrofluid-spiral labyrinth combined seal can not only solve the failure problem of ferrofluid seal at high speed, but also solve the leakage problem of spiral seal at shutdown and low speed, so as to achieve a more stable sealing effect at different speeds. The higher the speed is, the better its sealing performance is.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":"16 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of the ferrofluid-spiral labyrinth combined seal for sealing liquid\",\"authors\":\"Hujun Wang, Zhongquan Gao, Yuan Meng, Y. Li, Qiang Zhang\",\"doi\":\"10.3233/jae-220228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When the ferrofluid is used to seal liquid, the relative movement between the ferrofluid and the sealed liquid causes the stability problem of their interface, and the sealing performance is poor. However, the spiral and the spiral sleeve of the spiral labyrinth seal interact with the sealed liquid to make it reverse flow to prevent leakage when the shaft rotates. In order to improve the performance of rotary ferrofluid seal, the ferrofluid-spiral combined seal structure and the ferrofluid-spiral labyrinth combined seal structure are designed. A combined seal test-bench is built. The pressure resistance experiments and seal life experiments of ferrofluid seal and two type of combined seals are carried out. The theoretical and experimental results show that the sealing performance of the ferrofluid-spiral labyrinth combined seal is better than that of the ferrofluid-spiral combined seal ferrofluid seal. Ferrofluid-spiral labyrinth combined seal can not only solve the failure problem of ferrofluid seal at high speed, but also solve the leakage problem of spiral seal at shutdown and low speed, so as to achieve a more stable sealing effect at different speeds. The higher the speed is, the better its sealing performance is.\",\"PeriodicalId\":50340,\"journal\":{\"name\":\"International Journal of Applied Electromagnetics and Mechanics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Electromagnetics and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/jae-220228\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-220228","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

当铁磁流体用于密封液体时,铁磁流体与被密封液体之间的相对运动导致两者界面的稳定性问题,密封性能较差。但螺旋迷宫式密封的螺旋和螺旋套筒与被密封液体相互作用,使其反向流动,防止轴旋转时泄漏。为了提高旋转铁磁流体密封的性能,设计了铁磁流体-螺旋组合密封结构和铁磁流体-螺旋迷宫组合密封结构。建立了组合式密封试验台。对铁磁流体密封和两种组合密封进行了耐压实验和密封寿命实验。理论和实验结果表明,铁磁流体-螺旋迷宫组合密封的密封性能优于铁磁流体-螺旋组合密封。铁磁流体-螺旋迷宫组合密封不仅可以解决铁磁流体密封在高速时的失效问题,还可以解决螺旋密封在停机和低速时的泄漏问题,从而在不同速度下获得更稳定的密封效果。转速越高,其密封性能越好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance of the ferrofluid-spiral labyrinth combined seal for sealing liquid
When the ferrofluid is used to seal liquid, the relative movement between the ferrofluid and the sealed liquid causes the stability problem of their interface, and the sealing performance is poor. However, the spiral and the spiral sleeve of the spiral labyrinth seal interact with the sealed liquid to make it reverse flow to prevent leakage when the shaft rotates. In order to improve the performance of rotary ferrofluid seal, the ferrofluid-spiral combined seal structure and the ferrofluid-spiral labyrinth combined seal structure are designed. A combined seal test-bench is built. The pressure resistance experiments and seal life experiments of ferrofluid seal and two type of combined seals are carried out. The theoretical and experimental results show that the sealing performance of the ferrofluid-spiral labyrinth combined seal is better than that of the ferrofluid-spiral combined seal ferrofluid seal. Ferrofluid-spiral labyrinth combined seal can not only solve the failure problem of ferrofluid seal at high speed, but also solve the leakage problem of spiral seal at shutdown and low speed, so as to achieve a more stable sealing effect at different speeds. The higher the speed is, the better its sealing performance is.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
100
审稿时长
4.6 months
期刊介绍: The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are: Physics and mechanics of electromagnetic materials and devices Computational electromagnetics in materials and devices Applications of electromagnetic fields and materials The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics. The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信