基于随机森林的海上风力发电机故障检测数据驱动方法

Yulin Si, L. Qian, Baijin Mao, Dahai Zhang
{"title":"基于随机森林的海上风力发电机故障检测数据驱动方法","authors":"Yulin Si, L. Qian, Baijin Mao, Dahai Zhang","doi":"10.1109/IECON.2017.8216532","DOIUrl":null,"url":null,"abstract":"Compared with onshore wind turbines, fault detection and isolation (FDI) process is more important for offshore ones due to both additional loadings and maintenance difficulties. FDI will be more demanding when it comes to deep-sea floating wind turbines. In this work, an ensemble learning method, random forests (RF), is proposed to perform fault detection of offshore wind turbines, as RF is robust to overfitting, producing not only accurate and quick classification, but also importance ranking for each individual feature. At the same time, supplementary dominant signals are determined for each fault through principal component analysis. The NREL FASTv8 code and OC3-Hywind 5MW floating wind turbine baseline model are used to verify this proposed data-driven FDI design.","PeriodicalId":13098,"journal":{"name":"IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society","volume":"19 1","pages":"3149-3154"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A data-driven approach for fault detection of offshore wind turbines using random forests\",\"authors\":\"Yulin Si, L. Qian, Baijin Mao, Dahai Zhang\",\"doi\":\"10.1109/IECON.2017.8216532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compared with onshore wind turbines, fault detection and isolation (FDI) process is more important for offshore ones due to both additional loadings and maintenance difficulties. FDI will be more demanding when it comes to deep-sea floating wind turbines. In this work, an ensemble learning method, random forests (RF), is proposed to perform fault detection of offshore wind turbines, as RF is robust to overfitting, producing not only accurate and quick classification, but also importance ranking for each individual feature. At the same time, supplementary dominant signals are determined for each fault through principal component analysis. The NREL FASTv8 code and OC3-Hywind 5MW floating wind turbine baseline model are used to verify this proposed data-driven FDI design.\",\"PeriodicalId\":13098,\"journal\":{\"name\":\"IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"19 1\",\"pages\":\"3149-3154\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.2017.8216532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.2017.8216532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

与陆上风力发电机组相比,海上风力发电机组的故障检测和隔离(FDI)过程更为重要,因为海上风力发电机组有额外的负荷和维护困难。当涉及到深海漂浮式风力涡轮机时,外国直接投资的要求会更高。在这项工作中,提出了一种集成学习方法随机森林(RF)来进行海上风力涡轮机的故障检测,因为RF对过拟合具有鲁棒性,不仅可以产生准确快速的分类,而且可以对每个单独的特征进行重要排序。同时,通过主成分分析确定各故障的补充优势信号。使用NREL FASTv8代码和OC3-Hywind 5MW浮动风力涡轮机基线模型来验证该数据驱动的FDI设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A data-driven approach for fault detection of offshore wind turbines using random forests
Compared with onshore wind turbines, fault detection and isolation (FDI) process is more important for offshore ones due to both additional loadings and maintenance difficulties. FDI will be more demanding when it comes to deep-sea floating wind turbines. In this work, an ensemble learning method, random forests (RF), is proposed to perform fault detection of offshore wind turbines, as RF is robust to overfitting, producing not only accurate and quick classification, but also importance ranking for each individual feature. At the same time, supplementary dominant signals are determined for each fault through principal component analysis. The NREL FASTv8 code and OC3-Hywind 5MW floating wind turbine baseline model are used to verify this proposed data-driven FDI design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信