{"title":"金属离子漂移在杂化键合集成模型中的应用——基于失效准则的演化","authors":"Manzanarez Hervé, Moreau Stéphane, Cueto Olga","doi":"10.1109/SISPAD.2019.8870476","DOIUrl":null,"url":null,"abstract":"Copper ions drift is modeled in the case of hybrid bonding integration. The continuity equation is coupled to the Poisson’s equation and a copper ion concentration saturation is assumed. A 1D geometry simulation is initially realized to validate the model and 2D geometry simulations of hybrid bonding are analyzed by looking the time to percolate (TTP).","PeriodicalId":6755,"journal":{"name":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"96 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Metallic ions drift in hybrid bonding integration modeling, towards the evolution of failure criterion\",\"authors\":\"Manzanarez Hervé, Moreau Stéphane, Cueto Olga\",\"doi\":\"10.1109/SISPAD.2019.8870476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Copper ions drift is modeled in the case of hybrid bonding integration. The continuity equation is coupled to the Poisson’s equation and a copper ion concentration saturation is assumed. A 1D geometry simulation is initially realized to validate the model and 2D geometry simulations of hybrid bonding are analyzed by looking the time to percolate (TTP).\",\"PeriodicalId\":6755,\"journal\":{\"name\":\"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"volume\":\"96 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISPAD.2019.8870476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2019.8870476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Metallic ions drift in hybrid bonding integration modeling, towards the evolution of failure criterion
Copper ions drift is modeled in the case of hybrid bonding integration. The continuity equation is coupled to the Poisson’s equation and a copper ion concentration saturation is assumed. A 1D geometry simulation is initially realized to validate the model and 2D geometry simulations of hybrid bonding are analyzed by looking the time to percolate (TTP).