集成了一种快速模拟退火优化算法,用于作物叶面积指数变分同化

Yingying Dong , Chunjiang Zhao , Guijun Yang , Liping Chen , Jihua Wang , Haikuan Feng
{"title":"集成了一种快速模拟退火优化算法,用于作物叶面积指数变分同化","authors":"Yingying Dong ,&nbsp;Chunjiang Zhao ,&nbsp;Guijun Yang ,&nbsp;Liping Chen ,&nbsp;Jihua Wang ,&nbsp;Haikuan Feng","doi":"10.1016/j.mcm.2012.12.013","DOIUrl":null,"url":null,"abstract":"<div><p>Leaf area index (LAI) is a major indicator for crop growth monitoring and yield estimation. Data assimilation as an effective tool for crop LAI estimation fully considers the properties of actual observations and physical model simulations. In this work, we present a new data assimilation scheme, introducing a very fast simulated annealing (VFSA) optimization algorithm into the process of crop LAI assimilation with a four dimensional variational data assimilation (4DVAR) algorithm. Firstly, calibrating the input parameters of a crop growth simulation model based on history observations. Secondly, quantitatively describing the relationship between fields observed data and model simulated data by the cost function of 4DVAR algorithm. Finally, the optimization process of the cost function is accomplished by the VFSA optimization algorithm, and further the optimal solution is taken as the best combination of input parameters of physical model for LAI estimation. Winter wheat in Beijing is taken as an experimental object. The numerical results show not only the improved time efficiency of this proposed assimilation scheme, but also enhanced assimilation accuracy of all LAI assimilations, especially for LAI  <span><math><mo>≥</mo></math></span>  3.00. Theoretical analysis and practical experiments confirm the application prospect of VFSA optimization algorithm in LAI variational assimilation.</p></div>","PeriodicalId":49872,"journal":{"name":"Mathematical and Computer Modelling","volume":"58 3","pages":"Pages 877-885"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mcm.2012.12.013","citationCount":"26","resultStr":"{\"title\":\"Integrating a very fast simulated annealing optimization algorithm for crop leaf area index variational assimilation\",\"authors\":\"Yingying Dong ,&nbsp;Chunjiang Zhao ,&nbsp;Guijun Yang ,&nbsp;Liping Chen ,&nbsp;Jihua Wang ,&nbsp;Haikuan Feng\",\"doi\":\"10.1016/j.mcm.2012.12.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Leaf area index (LAI) is a major indicator for crop growth monitoring and yield estimation. Data assimilation as an effective tool for crop LAI estimation fully considers the properties of actual observations and physical model simulations. In this work, we present a new data assimilation scheme, introducing a very fast simulated annealing (VFSA) optimization algorithm into the process of crop LAI assimilation with a four dimensional variational data assimilation (4DVAR) algorithm. Firstly, calibrating the input parameters of a crop growth simulation model based on history observations. Secondly, quantitatively describing the relationship between fields observed data and model simulated data by the cost function of 4DVAR algorithm. Finally, the optimization process of the cost function is accomplished by the VFSA optimization algorithm, and further the optimal solution is taken as the best combination of input parameters of physical model for LAI estimation. Winter wheat in Beijing is taken as an experimental object. The numerical results show not only the improved time efficiency of this proposed assimilation scheme, but also enhanced assimilation accuracy of all LAI assimilations, especially for LAI  <span><math><mo>≥</mo></math></span>  3.00. Theoretical analysis and practical experiments confirm the application prospect of VFSA optimization algorithm in LAI variational assimilation.</p></div>\",\"PeriodicalId\":49872,\"journal\":{\"name\":\"Mathematical and Computer Modelling\",\"volume\":\"58 3\",\"pages\":\"Pages 877-885\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.mcm.2012.12.013\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical and Computer Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895717712003573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Computer Modelling","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895717712003573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

叶面积指数(LAI)是作物生长监测和产量估算的重要指标。数据同化作为作物LAI估计的有效工具,充分考虑了实际观测和物理模式模拟的特性。在这项工作中,我们提出了一种新的数据同化方案,将一种非常快速的模拟退火(VFSA)优化算法引入到用四维变分数据同化(4DVAR)算法同化作物LAI的过程中。首先,根据历史观测值对作物生长模拟模型的输入参数进行校正。其次,利用4DVAR算法的代价函数定量描述野外观测数据与模型模拟数据之间的关系。最后,通过VFSA优化算法完成代价函数的优化过程,并将最优解作为LAI估计物理模型输入参数的最佳组合。以北京冬小麦为实验对象。数值结果表明,该同化方案不仅提高了同化时间效率,而且提高了所有LAI同化的同化精度,特别是对于LAI≥3.00的同化精度。理论分析和实际实验证实了VFSA优化算法在LAI变分同化中的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating a very fast simulated annealing optimization algorithm for crop leaf area index variational assimilation

Leaf area index (LAI) is a major indicator for crop growth monitoring and yield estimation. Data assimilation as an effective tool for crop LAI estimation fully considers the properties of actual observations and physical model simulations. In this work, we present a new data assimilation scheme, introducing a very fast simulated annealing (VFSA) optimization algorithm into the process of crop LAI assimilation with a four dimensional variational data assimilation (4DVAR) algorithm. Firstly, calibrating the input parameters of a crop growth simulation model based on history observations. Secondly, quantitatively describing the relationship between fields observed data and model simulated data by the cost function of 4DVAR algorithm. Finally, the optimization process of the cost function is accomplished by the VFSA optimization algorithm, and further the optimal solution is taken as the best combination of input parameters of physical model for LAI estimation. Winter wheat in Beijing is taken as an experimental object. The numerical results show not only the improved time efficiency of this proposed assimilation scheme, but also enhanced assimilation accuracy of all LAI assimilations, especially for LAI   3.00. Theoretical analysis and practical experiments confirm the application prospect of VFSA optimization algorithm in LAI variational assimilation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical and Computer Modelling
Mathematical and Computer Modelling 数学-计算机:跨学科应用
自引率
0.00%
发文量
0
审稿时长
9.5 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信