{"title":"量子层析奥布里-马瑟理论","authors":"A. Shabani, F. Khellat","doi":"10.1063/5.0127998","DOIUrl":null,"url":null,"abstract":"In this paper, we study the quantum analog of the Aubry–Mather theory from a tomographic point of view. In order to have a well-defined real distribution function for the quantum phase space, which can be a solution for variational action minimizing problems, we reconstruct quantum Mather measures by means of inverse Radon transform and prove that the resulting tomograms, which are fair and non-negative distribution functions, are also solutions of the quantum Mather problem and, in the semi-classical sense, converge to the classical Mather measures.","PeriodicalId":50141,"journal":{"name":"Journal of Mathematical Physics Analysis Geometry","volume":"11 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quantum tomographic Aubry–Mather theory\",\"authors\":\"A. Shabani, F. Khellat\",\"doi\":\"10.1063/5.0127998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the quantum analog of the Aubry–Mather theory from a tomographic point of view. In order to have a well-defined real distribution function for the quantum phase space, which can be a solution for variational action minimizing problems, we reconstruct quantum Mather measures by means of inverse Radon transform and prove that the resulting tomograms, which are fair and non-negative distribution functions, are also solutions of the quantum Mather problem and, in the semi-classical sense, converge to the classical Mather measures.\",\"PeriodicalId\":50141,\"journal\":{\"name\":\"Journal of Mathematical Physics Analysis Geometry\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Physics Analysis Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0127998\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics Analysis Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0127998","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this paper, we study the quantum analog of the Aubry–Mather theory from a tomographic point of view. In order to have a well-defined real distribution function for the quantum phase space, which can be a solution for variational action minimizing problems, we reconstruct quantum Mather measures by means of inverse Radon transform and prove that the resulting tomograms, which are fair and non-negative distribution functions, are also solutions of the quantum Mather problem and, in the semi-classical sense, converge to the classical Mather measures.
期刊介绍:
Journal of Mathematical Physics, Analysis, Geometry (JMPAG) publishes original papers and reviews on the main subjects:
mathematical problems of modern physics;
complex analysis and its applications;
asymptotic problems of differential equations;
spectral theory including inverse problems and their applications;
geometry in large and differential geometry;
functional analysis, theory of representations, and operator algebras including ergodic theory.
The Journal aims at a broad readership of actively involved in scientific research and/or teaching at all levels scientists.