在一些距离测量概念上的聚类方法的凝聚嵌套法和分裂分析法

IF 1.1 Q3 STATISTICS & PROBABILITY
Susi Wijuniamurti, S. Nugroho, R. Rachmawati
{"title":"在一些距离测量概念上的聚类方法的凝聚嵌套法和分裂分析法","authors":"Susi Wijuniamurti, S. Nugroho, R. Rachmawati","doi":"10.33369/jsds.v1i1.21009","DOIUrl":null,"url":null,"abstract":"Clustering data through hierarchical approach could be performed by Agglomerative Nesting (AGNES) Method and Divisive Analysis (DIANA) Method. The objective of this research is to compare both the methods based on Euclid and Manhattan distance measurements. Of this research the clustering procedures of agglomerative method are conducted by exploring all techniques including single linkage, complete linkage, average linkage, and Ward. The data used are the National Socio-Economic Survey (SUSENAS) data which are selected specifically for the percentage of over 5 year old residents in each province, for both living in urban or rural, who access the internet in the last 3 months in 2017 but classified according purpose of accessing. By applying Mean Square Error (MSE) for 2 and 3 clusters, it can be concluded that the single linkage technique is the best performance of clustering procedure for both Euclidean and Manhattan distances.","PeriodicalId":29911,"journal":{"name":"Japanese Journal of Statistics and Data Science","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Agglomerative Nesting (AGNES) Method and Divisive Analysis (DIANA) Method For Hierarchical Clustering On Some Distance Measurement Concepts\",\"authors\":\"Susi Wijuniamurti, S. Nugroho, R. Rachmawati\",\"doi\":\"10.33369/jsds.v1i1.21009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering data through hierarchical approach could be performed by Agglomerative Nesting (AGNES) Method and Divisive Analysis (DIANA) Method. The objective of this research is to compare both the methods based on Euclid and Manhattan distance measurements. Of this research the clustering procedures of agglomerative method are conducted by exploring all techniques including single linkage, complete linkage, average linkage, and Ward. The data used are the National Socio-Economic Survey (SUSENAS) data which are selected specifically for the percentage of over 5 year old residents in each province, for both living in urban or rural, who access the internet in the last 3 months in 2017 but classified according purpose of accessing. By applying Mean Square Error (MSE) for 2 and 3 clusters, it can be concluded that the single linkage technique is the best performance of clustering procedure for both Euclidean and Manhattan distances.\",\"PeriodicalId\":29911,\"journal\":{\"name\":\"Japanese Journal of Statistics and Data Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japanese Journal of Statistics and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33369/jsds.v1i1.21009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Statistics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33369/jsds.v1i1.21009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

分层聚类数据可采用聚类嵌套法(AGNES)和分裂分析法(DIANA)进行。本研究的目的是比较基于欧几里得和曼哈顿距离测量的两种方法。在本研究中,通过探索单链接、完全链接、平均链接和Ward等所有技术,进行了聚类方法的聚类过程。使用的数据是国家社会经济调查(SUSENAS)数据,这些数据是专门为2017年最后3个月访问互联网的各省5岁以上城市或农村居民的百分比选择的,但根据访问目的进行分类。通过对2类和3类聚类的均方误差(MSE)分析,得出单链接聚类技术在欧氏距离和曼哈顿距离的聚类过程中性能最好的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Agglomerative Nesting (AGNES) Method and Divisive Analysis (DIANA) Method For Hierarchical Clustering On Some Distance Measurement Concepts
Clustering data through hierarchical approach could be performed by Agglomerative Nesting (AGNES) Method and Divisive Analysis (DIANA) Method. The objective of this research is to compare both the methods based on Euclid and Manhattan distance measurements. Of this research the clustering procedures of agglomerative method are conducted by exploring all techniques including single linkage, complete linkage, average linkage, and Ward. The data used are the National Socio-Economic Survey (SUSENAS) data which are selected specifically for the percentage of over 5 year old residents in each province, for both living in urban or rural, who access the internet in the last 3 months in 2017 but classified according purpose of accessing. By applying Mean Square Error (MSE) for 2 and 3 clusters, it can be concluded that the single linkage technique is the best performance of clustering procedure for both Euclidean and Manhattan distances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
15.40%
发文量
42
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信